
USAISE'C'
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES
(AIRMICS)

N
OR)

(D
EXPERT SYSTEMS DEVELOPMENT

METHODOLOGY

(ASQBG-A-89-033)

July, 1989

DTIC

ELECTEANi 1990

AIRMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

90 01 19 009

UNCLASSIFIED
RPC"ItlIVV Tl ARlWlCATW OP T1t PAM?

form Approved

REPORT DOCUMENTATION PAGE oMB No. 0o4--I8
Exp. Date; Jun 30, 1986

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONF
2a. SECUJRITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

N/A
2b. DECI.ASSIPICATION I DOUWNGRADING SCHEDULE N/A

N/A
4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ASQBG-A-89-033 N/A

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION
(if applicable) NAA! RM ICS ASQBG - A N/A

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and Zip Code)

115 O'Keefe Bldg.,
Georgia Institute of Technology N/A
Atlanta. GA 30332-0800

Ra. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

AIRMICS ASQBG - A
Sc. ADDRESS (City, State. and ZIP Code) to QOMRIMiCF OF rIgTnfim N fr mR

115 O'Keefe Bldg., PROGRAM PROJECT TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.

Atlanta, GA 30332-0800 62783A DYIO 05-04-03
11 TITLE (Include Security Classification)

Expert System Development Methodology (UNCLASSIFIED)
12. PERSONAL AUTHOR(S)

Dr. J. W. Gowens

t3a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

FROM _ TO July 28, 1989 J 160

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP ? Expert Systems; Artificial Intelligence,' Knowledge Engineering,' Expert System

Sheelsi Design and Development

i , BS'rRACT (Continue on reverse if necessary and identity by block number)

The purpose of this guide is to provide the procedures to develop expert systems (ES) that can be used lo-
cally to assist in mission accomplishment and to aid decision processes of the local command. Using the
guidelines in this document, applications can be screened for expert system attributes, potential projects
evaluated and initial estimates of the project made. , -

iO ISIR1IIVIItN I ,VAIIAIIII IIY OF AIISIRACI" 21. ABSTRACT SF(CURITY CIASSIFICATION

IINCIASSII'1EI) I IJNIJMIiII) D SAME. AS RPT. [] I)TIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPIIONE (Include Area Code) 22c OFFICE SYMBOL

Michael J. Evans (404) 894-3107 ASQBG - A
DD FORM 1473, 84 MAR 83 APR edition may hr uqed until exhausled Cr:C'vlIT CISFItICATIOi OF Tt[L3 1'x(;1

All oiliher editioni arc obsolete UNCLASSI FI ED

This research was sponsored by the Army Institute for Research in Management
Information, Communications, and Computer Sciences (AIRMICS), the RDTE
organization of the U.S. Army Information Systems Engineering Command (USAISEC).
This effort was performed under Contract DAKF11-88-D-0011. This research report is
not to be construed as an official Army position, unless so designated by other authorized
documents. Material included herein is approved for public release, distribution
unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Aooesslon 70.

flIS GRA&I
DIC M 0
unannoumoed 0
Justif oati .

BY
Distribut ion/
Avallablllty Cod"

IAvSazi /or

Dist Jspecial

s/!s

a es Gantt, Chief n R. Mitchell
anagement Information Director

Systems Division AIRMICS

The views, opinions, and/or findings contained in this guide are
those of the authors and should not be construed as an official
Department of the Army position, policy, of decision unless so
designated by other documentation.

Table of Contents

Chapter1.............................1

Introduction...........................

1.1 Purpose and Scope 1

1.1.1 Purpose 1

1.1.2 Scope 1

1.2 Background 1

1.3 Format of the Guide 3

1.4 How to Use This Guide..................5

Chapter2.o............................6

Fundamentals of Expert Systems.................. 6

2.1 Introduction 6

2.1.1 Definition 6

2.1.2 Expert Systems..................6

2.2 Pre-History of Artificial Intelligence. 6

2.3 Modern History of Artificial Intelligence. . . 7

2.3.1 George Babbage 7

2.3.3 Alan Turing 8

2.3.4 John von Neumann 9

2.3.5 Are Computers Intelligent? 9

2.3.7 The Dartmouth Conference 10

2.4 Expert Systems. 14

2.4.1 The First Expert System.. 14

2.4.2 The MYCIN Project 14

2.5 Definition of Expert Systems....o..........18

2.6 This Guide. 25

i

Table of Contents

Chapter 3 27

Overview of the Knowledge Base

Systems Development Methodology 27

3.1 Introduction 27

3.2 Traditional Software Development Model 27

3.3 Iterative Development Model 29

3.4 Detail Development Methodology 31

3.4.2 Solution Definition 33

3.4.3. Design and Build 33

3.4.4 Testing and Transition 36

3.5 Management Activities 36

3.6 Route Maps 38

Chapter 4 43

Project Initiation and Planning 43

4.1 Introduction 43

4.2 Identification of Opportunities 43

4.2.1 Motivation to Build Expert Systems. 44

4.2.2 The Role of the System 46

4.3 Estimating the Project and Preparing the

Workplan 47

4.3.1 Estimating the Number of Rules, Frames and

Objects 48

4.3.2 Estimating the Effort for Project 49

4.3.3 Preparing the Workplan 50

4.3.4 Putting it all together in an example. ... 52

Chapter 5 55

Selection of the Development Team 55

5.1 Introduction 55

ii

Table of Contents

5.2 Selection of the Team 56

5.2.1 Appointment of the Team 56

5.2.2 Team Composition 57

5.2.3 Selection of Knowledge Engineers 57

5.2.4 Selection of stakeholders 59

Chapter 6 64

Selection of the Expert System Shell 64

6.1 Introduction 64

6.2 Shell Selection Method 65

6.3 Categorize your problem type 65

6.3.1 Diagnostic Problems 66

6.3.2 Monitoring Systems 66

6.3.3 Design Problems 67

6.3.4 Scheduling Problems 67

6.3.5 Planning Problems 68

6.4 Define Interface Requirements 68

6.4.1 User interface 68

6.4.2 Development Interface 69

6.4.3 System Interfaces 70

6.5 Define Platform Requirements 71

6.5.1 Development Platform Requirements 71

6.5.2 Delivery Platform Requirements 71

6.6 Determine Shell Capabilities 72

6.6.1 Classes of Shells 72

6.6.2 Shell Capabilities 74

6.6.3 Programming Techniques 77

6.6.4 Vendor support and Cost 81

6.7 Matching Requirements and Capabilities 83

iii

Table of Contents

Chapter 7 85

F'nowledge Acquisition 85

7.1 Introduction.....................85

7.2 Documentation Review. 86

7.3 Methods of Interviewing Experts 87

7.3.1 Nondirective Interviewing 87

7.3.2 Structured Interviewing 90

7.4 Expert Protocols. 94

7.4.1 Thinking Aloud Narratives 94

7.4.2 Expert Systems Simulation 96

Chapter 8............................98

Knowledge Modelling 98

8.1 Introduction.....................98

8.2 Knowledge Modelling. 98

8.3 The Modelling Cycle 105

Chapter 9...........................107

Design and Prototyping.....................107

9.1 Introduction 107

9.2 Expert System Design 107

9.2.1 User Perceived Objects. 107

9.2.2 Design Display Layouts. 109

9.2.3 Interaction Sequencing. 117

9.2.4 Output Behavior. 120

9.3 Prototyping Phase 123

Chapterl10..........................125

Implementation Strategy.....................125

iv

Table of Contents

10.1 Introduction125

10.2 Managing the Implementation125

10.3 Implementation Plan 128

10.3.1 Surface Implementation Actions 128

10.3.2 Subsurface Implementation Actions. 129

Chapter 11. 130
Documentation and Maintenance 130

11.1 Introduction130

11.2 Elements and Phases of Expert System

Documentation131

11.3 Brief Description 131

11.4 Functional description of an expert system. . . . 137

11.5 The Proposal140

11.6 Requirements Definition Document142

11.7 Solution Definition 144

11.8 Program Documentation 145

11.8.1 Program Maintenance Manual 146

11.8.2 Source Code -- Internal Documentation. . . 147

11.8.3 Documentation File148

11.9 User Documentation 149

11.9.1 Intrinsic Documentation 149

11.9.2 User Manual 154

11.9.3 On-Line Documentation157

v

Chapter I

Introduction

1.1 Purpose and Scope.

1.1.1 Purpose. The purpose of this guide is to provide the

procedures to develop expert systems (ES) that can be used locally

to assist in mission accomplishment and to aid decision processes

of the local command. Using the guidelines given in this document,

applications can be screened for expert system attributes,
potential projects evaluated and initial estimates of the project

made.

1.1.2 Scope. The guide has been written with the typical user
assumed to be an officer or enlisted person with experience in

microcomputers and some formal training in computer science, either
in Army schools or a civilian educational institution. It can be
used by commanders and/or staff personnel at all levels of command

who wish to develop an ES to assist in the decision making process.

These decisions might involve analyzing voluminous data from
diagnostic sensors, analyzing data from readiness reports,
analyzing risks for alternative courses of action, analyzing the
consequences of several courses of action and other decision arenas

where human judgment is a necessary element of the decision. Those

personnel who are fully trained and totally familiar with computer
operations and ES construction will find the guide a useful

refresher and self check manual. The guide is designed to be used
at all levels of ES development from hardware/software selection

to coding of the system.

1.2 Background.

This guide was prepared under contract to the U.S. Army Institute

for Research in Management Information, Communications, and

Computer Sciences (AIRMICS), Atlanta, Georgia. AIRMICS has been

involved in decision making research activity that includes

decision support systems (DSS), artificial intelligence (AI), and

expert systems (ES) since 1977. This project was a continuation

of that interest in the decision making processes.

The need for computer based decision assistance has been documented

for some time. As technology shortened the time cycle for decision

making in the military environment, it became apparent that

automated support was necessary. Commanders today will have only

hours or minutes to gather data, analyze that data, make a decision

and issue orders.

Until recently, automation of decision making was beyond the reach

of local commanders. The automation equipment required was too

expensive and too fragile for deployment to lower levels of

command. Today's powerful microcomputers have changed the face of

computing at all levels of command. The latest microcomputer

technology provides a hardware and software environment which is

sufficiently powerful for the development of practical and useful

ES. The next step is to provide the capability for local

commanders to develop ES.

Nowhere is the need for speed in difficult decision making more

apparent than in the Army's mobilization mission. Converting

thousands of men and pieces of equipment from reserve to active

status is a monumental task under the best of conditions.

Performing mobilization under the duress of a world crisis is a

task beyond comprehension. This current project is to develop a

mobilization planning and execution expert system (MOBPLEX) to

assist mobilization stations and FORSCOM J5 in the mobilization

process both in the planning phases and the execution phases.

-2-

This guide provides a methodology to develop ES. The MOBPLEX is

used as the basis for the guide. The process conducted to develop

MOBPLEX is used throughout this guide as an example of ES

development. However, the principles given in this guide are

generally applicable to any ES development. This guide can be used

any commander or staff in the development of their specific ES.

1.3 Format of the Guide.

The guide consists of two volumes. Volume 1 is the Development

Metodology and Volume 2 is an Evaluation Methodology containing

methods for evaluation, validation and verification of expert

systems. Validation and verification is an extremely difficult

problem and is given separate treatment in this volume.

Volume 1 consists of 10 chapters as outlined below providing the

details of the development methodology. An index is provided at

the end of the volume to facilitate finding topics in this guide.

Chapter 1, Introduction, presents general information and

motivation for this project.

Chapter 2, Fundamentals of Expert Systems, provides a basic

introduction to the history and theory of AI and ES.

Chapter 3, Overview of the Methodology, presents a general

synopsis of the methodology and an orientation to the

remainder of the volume and its relationship to the

methodology.

Chapter 4, Project Planning and Initiation gives criteria for

selection of a candidate project with explicit criteria that

can be applied to potential applications to test their

applicability for ES development. In addition, the chapter

gives guidelines for estimation of the effort in the project

-3-

and a work breakdown structure for designing the project plan.

Chapter 5, Selection of the Knowledge Engineering Team, is a

framework for selection of the individuals to participate on

the development team.

Chapter 6, Selection of the Expert System Shell, provides

guidance on the parameters to be considered in the selection

of the language (or expert system shell) in which to program

the ES.

Chapter 7, Knowledge Acquisition, discusses the basics of

knowledge engineering and knowledge acquisition techniques.

Chapter 8, Knowledge Modeling, provides a framework for

developing a model of the data and knowledge required for the

application.

Chapter 9, Design and Prototyping, discusses the problems of

designing the user interface and other characteristics of the

ES and the prototyping procedures.

Chapter 10, Implementation Planning, provides a paradigm for

planning the implementation of the system so that it is

accepted into the culture of the using organization.

Chapter 11, Documentation and Maintenance, provides assistance

in defining documentation for the system and setting up the

recurring maintenance activity for the installed system.

Volume 2 contains four chapters which are a collection of

evaluation techniques that may be used in all phases of the

development of expert systems. Evaluation begins with the

selection of the project. Simple selection criteria were given in

-4-

Chapter 4 of Volume 1 on candidate selection. In Volume 2 more

penetrating analysis is given for evaluation of the project from

initiation through acceptance testing.

Chapter 1, Evaluation Overview, gives an outline of the volume

and motivation for the volume.

Chapter 2, Impact Assessment, is a guide for conducting an
impact assessment of potential applications that were selected

using the criteria in Chapter 4 in Volume 1.

Chapter 3, Cost Benefit Analysis, provides guidance for

preparation of a cost benefit analysis for the expert system.

This is an important step in the decision to build an expert

system.

Chapter 4, Knowledge Base Validation, presents procedures

for the validation of the knowledge base in the expert system.

1.4 How to Use This Guide.

This guide is written in the order the steps to building an expert

system are performed. Thus the chapter sequence gives the basic

sequence of operations. On the other hand, the development

methodology is one of staged, iterative development. As such,

there is not a totally linear sequence of steps to be followed.

The development team must build a plan for the project based on

the needs of the targeted organization.

Chapter 3 provides the guidance on how to build a "route map"

through the methodology. Thus, Chapter 3 is more than just an

overview of the methodology. It is the keystone to the remainder

of the guide. Understanding the "route map" and iterative

development is the key to building a feasible work plan using the

methods of this guide.

-5-

Chapter 2

Fundamentals of Expert Systems

2.1 Introduction.

2.1.1 Definition. Artificial Intelligence is a term that

describes using sophisticated computer programs to embody advanced

methods of computer technology. In many ways the term is

misleading because it indicates that perhaps there is an element

of human in the computer. Nothing could be further from the truth.

Artificial intelligence, as it is commonly used and as it will be

used in this guide, is merely software and/or hardware that draws

from the current most advanced techniques of computer science. The

issue of whether machines "think" in the sense that humans think

is an unresolved philosophical question that we will not attempt

to answer. If you are interested in this philosophical question,

you are referred to McCorduckI as a good place to start.

2.1.2 Expert Systems. Our concern here will be with expert

systems technology, a subset of artificial intelligence that holds

great promise in making software more sophisticated in its

operation as well as easier to use. These computer programs enable

machines (computers) to do things that would require intelligence

if done by people. In order to understand how expert systems

became the complex study of computer programs that it is today, we

need a reference to the historical beginnings of man's relationship

with machinery and computers. Accordingly, this chapter will

discuss the background and fundamental principles of expert

systems.

McCorduck, Pamela. Machines Who Think, W. H. Freeman,

San Francisco, 1979.

-6--

2.2 Pre-History of Artificial Intelligence.

Man's fascination with machinery dates back to the beginning of

civilized man. Some of man's earliest writings exhibit interest

in machines that could have human-like qualities. These qualities

were often captured in some form of robot, often manufactured from

actual human parts, e.g. Dr. Frankenstein' monster. Other forms

were mechanical devices to perform a function to aid man in his

daily activities. One of the earliest forms of artificial

intelligence was clock mechanisms. These "clocks" were mechanisms

that could keep time but also perform a number of other functions.

Pre-history is replete with examples of "clockworks", some real,

some fanciful, that have been built or imagined over the centuries.

McCorduck2 provides an excellent overview of this pre-history

period.

2.3 Modern History of Artificial Intelligence.

2.3.1 George Babbage. The modern history of artificial

intelligence must begin with George Babbage in the early 19th

century. Babbage created a device which he called the analytical

engine and which had the capability of performing mathematical

calculations very rapidly. Babbage is generally regarded to have

built the first computer. Today, we would call his computer an

analog computer. During Babbage's time, there was no clear

distinction between what might be called intelligent thought and

mathematical calculation. We now see arithmetic as a mere rote

manipulation of numbers. But in Babbage's time it was seen to be

far more fundamental to intelligence, probably because only the

most highly educated and not even all college graduates could do

arithmetic.

When Babbage made a machine that could perform calculations after

some setup steps, the engine was seen as a severe threat to human

2 McCorduck, op. cit.

- 7-

intelligence. The Babbage analytical machine was a rather large

contraption consisting primarily of hundreds of polished brass

gears and rods that were stacked together in tall columns. The

analytical engine was significant because it had the capability,

at least in theory, to manipulate any symbol and not just numbers.

This caused it to be quite different from previous calculators

which did only simple arithmetic operations which had existed for

several hundred years before the analytical engine. Babbage worked

on various versions of the analytical engine for some 50 years and

when he died in 1871 he had finished none of them.
3

2.3.3 Alan Turing. Skipping forward five decades or so, the next

figure in the pursuit of artificial intelligence was a British

mathematician named Alan Turing. Turing took the next important

step in the progress from simple clockwork mechanisms such as

Babbage's to machines with intelligence. In the middle 1930's,

Turing was considering the question of how to describe things that

are computable. He decided that whatever could be expressed by

numbers and calculated by a machine could be defined as computable.

Certainly performing arithmetic operations were computable. But

other operations such as writing good poetry were severely in

question as to whether they were computable.

In order to work with this problem, Turing created what he called

the universal machine. These machines were entirely theoretical

at the time he created them. The machines that Turing was talking

about were machines that manipulate information in contrast to

machines that performed other functions. Actually, it was not

possible to build a universal machine at the time Turing invented

it. But he was able to prove such a machine could exist.

3 Lady Ada Lovelace was a contemporary of George Babbage.
She studied with Babbage and wrote a popular essay explaining the
analytical engine. She is sometimes credited with inventing
computer languages. The Ada computer language is named in her
honor.

-8-

Turing began work on building a physical machine in the middle
1940's. Simultaneously, several teams in the United States were
also building computers. All the machines that were being worked
on at that time followed the principles that Turing proved in his
universal machines.

2.3.4. John von Neumann. The next major figure in the history of
computing is an American mathematician originally from Hungary by
the name of John von Neumann. Von Neumann followed Turing's early
work in computing, but added to it the study of the physiology of
the human brain. He hoped this study would enable him to build a
computer with human thinking capacities.

Many of the individuals working on computers in the late 40's and
early 50's had envisioned that a computer would eventually be a
mechanical and mathematical model of the human nervous system.
Neumann was trying to create what might be described as an
electronic nervous system. He believed that the design of the
computer using, first, vacuum tubes, and, later, transistors could
be built in a way to create a neural network much like the network
of neurons in the brain and that the computers might operate very
much like the human brain. Von Neumann was not alone in his
beliefs. Most scientists working in the area of this fledgling
science known as computer science held similar beliefs. It is
probably from this early work in attempting to emulate the human
nervous system that the foundations for calling advanced computer
technology "artificial intelligence" were solidified.

2.3.3. Are Computers Intelligent? At this time, scientists saw
the stirrings of life inside their computers. This prompted Alan
Turing to create a test now known as the Turing test which could
be used to determine if the computer was "intelligent" or not.
This test involves the placing of a human being in front of two

-9-

teletypes. The human being asks questions of the two teletypes -

- teletype A and teletype B -- without knowledge of whether the

teletype is connected to a computer or if there's another human

being responding from the teletype. Turing stated that if the

individual asking questions and communicating with the two

teletypes was unable to determine whether or not the teletype

responses were coming from a computer or from a human then we would

be able to define that computer as being intelligent. Turing and

many of his colleagues at the time believed that the creation of

such a computer was just around the proverbial corner and that

surely by the end of this century computers of this type would be

generally available. We now know as we are about to enter the last

decade of this century that Alan Turing and his colleagues were

highly optimistic.

By the beginning of 1950, digital computers were beginning their

first era. At that time it was clear that very powerful computers

could be built. They certainly did not approach the complexity of

the brain, but on the other hand, they were powerful enough to

attempt intelligent tasks with them. The field of artificial

intelligence really begins just at this point. Digital computers

were made and they were waiting. Empty machines with tremendous

computing power waiting to be put to work.

2.3.7 The Dartmouth Conference. The next important step in

artificial intelligence history was the Dartmouth Conference put

together by John McCarthy with assistance from several others.

McCarthy took his undergraduate degree at Cal Tech and completed

his Ph.D. in mathematics at Princeton in 1951. During his graduate

education, McCarthy studied under von Neumann at Princeton and

began to think about the theory of computers and their relationship

to problem solving. It was here at Princeton that he first began

to experiment directly with computers.

- 10 -

In 1956, McCarthy joined with three others who thought it might be

a good idea to get all the individuals together who were interested

in mechanical intelligence. McCarthy, Marvin Minsky, Nathaniel

Rochester, and Claude Shannon proposed a summer conference to be

held at Dartmouth College to the Rockefeller Foundation. McCarthy

was the prime mover behind this conference and coined the term

artificial intelligence in his proposal. The Rockefeller

Foundation provided $7500 for the conference and all the

significant characters in the field attended: the proposal group,

Herbert Simon, Alan Newell, Arthur Samuel, Oliver Selfridge and Ray

Solomonoff. All these individuals became the founding fathers of

the entire field of artificial intelligence.

Herbert Simon and Alan Newell from Carnegie Mellon University were

further along than anyone in the conference. These two men had

come to the conference with a computer program that they called the

Logic Theory Machine. The program had as its purpose to solve

problems in logic in the same way that humans might do. It had a

pretty good number of capabilities. It could perform substitutions

of one expression for another, break up a problem into a series of

sub-problems, and it could decide which sub-problems to work on
using a method they called chaining. The program could actually

find proofs for 38 of 52 theorems it tried in the Principia

Mathematica, the epic work of mathematical logic by Alfred North

Whitehead and Bertrand Russell. The program therefore could solve

problems pretty close to the level of a college student and it

found one proof more elegant than the version offered by Whitehead

and Russell.

Another pioneer of artificial intelligence, Arthur Samuel, was at

the Dartmouth Conference. Samuel was talking about a computer

program which he had written to play checkers. Samuel was an IBM

employee and helped to build the first commercial. computers for

IBM. He utilized the same computers that were being built for

- 1I -

commercial applications. He would work on that at night in order

not to disturb the business operations out on the factory floor

during the day.

There was also a great interest in chess. McCarthy himself was

interested in the idea of computer chess. And it was at this time

that McCarthy contributed a great insight was gained into the

strategy of problem solving using computers. Because chess has so

many possible moves, it's not possible to look ahead to all the

possible moves that can be made. Therefore, some method had to be

designed to determine how many moves ahead a chess playing program

might look and the strategy to use for looking ahead.

McCarthy began work on utilizing human-like problem solution search

characteristics to determine how to look ahead in chess-playing

programs. He created a mathematical method which he called the

alpha-beta heuristic. First you look for the most promising move

that you can make, then you look for the most damaging thing your

opponent can respond with. Then you stop your search on all lines

that give your opponents a powerful answer. In this way you can

reduce the number of possibilities that you have to consider when

you search for a solution. This principle has become an important

principle in the area of artificial intelligence known as expert

systems today.

It was about this time in the middle 1950s that high level computer

languages were invented. Prior to this, computer programming was

a tedious process of entering zeros and ones into the computer.

In the middle and late 1950s two of the most important programming

languages ever invented COBOL and FORTRAN were invented. To handle

the special characteristics of artificial intelligence work, John

McCarthy invented a language called LISP. LISP has become known

as the language of artificial intelligence because it was created

to perform symbolic manipulations in a very specialized kind of

- 12 -

way. LISP is generally regarded as being the second computer

language to be written. FORTRAN having been invented in 1956 and

LISP in about 1958.

2.3.8. In the 1960's there was a flush of hope that the creation

of a highly intelligent computer was just around the computer.

Many programs were written that could perform many human like

operations. Computer programs were playing championship checkers,

pretty passable games of chess and many other things. Programs

were choosing portfolios of stocks and doing almost as well as

human stock investors. There was even a program that could solve

integrals from freshmen calculus and programs that could solve

arithmetic word problems at the six grade level.

This excitement became a public excitement and many of the

researchers became very bold in their predictions. Herbert Simon

wrote in 1957, "It's not my aim to surprise or shock you but the

simplest way I can summarize is to say that there is now in the

world machines that think, learn and create. Moreover, their

ability to do these things is going to increase rapidly until in

a visible future the range of problems they can handle will be co-

extensive with the range to which the human mind has been

applied...a digital computer will be the world's chess champion

within 10 years. A digital computer will discover and prove an

important new mathematical theorem. And theories and psychology

will take the form of computer programs."

Another researcher said that in three to eight years we will have

a machine with a general intelligence of an average human being.

This optimism grew a crowd of both critics and supporters. The

ancient debate between man and machine grew up again. The debate
was partially philosophical in the determination of how one can

define intelligence. Can a machine ever be intelligent? Actually

- 13 -

the predictions of the researchers came to nothing. Most of the

expected advances failed to occur. The performance of programs

that had been written began to look less and less impressive.

While we haven't given up on some of these goals for computer

programs, we now know that computers will likely never be as

intelligent as a human for many operations.

2.4 Expert Systems.

2.4.1 The First Expert System. The next step in the path toward

expert systems came from a individual who had been a graduate

student under Herbert Simon at Carnegie Mellon. His name was

Edward Feigenbaum. Feigenbaum worked with Simon at Carnegie Mellon

and later moved to Berkeley, California. There he joined forces

with Julian Feldman and they went to work in the fledgling field

of artificial intelligence. Feigenbaum had a degree in cognitive

psychology and was interested in creating structures that would

simulate the ability to learn from a human being. Feigenbaum and

Feldman published one of the first books in artificial intelligence

which was the collection of scientific papers called Computers and

Thought. It was published in 1963 by McGraw-Hill.

Later Feigenbaum moved to Stanford and there he began work with a

Nobel laureate Joshua Lederberg who had won the noble prize in

genetics. They began work on a program called DENDRAL. DENDRAL

is a system to define adequate hypothesis to explain data that came

out of mass spectrographs. Feigenbaum did this by developing a

computer program which captured the knowledge and expertise of the

scientist working in the area. DENDRAL, therefore, was the

precursor of the next generation of AI programs which have come to

be called expert system or expert systems.

2.4.2 The MYCIN Project. The next step in expert systems

technologies occurred at Stanford University in a project called

MYCIN. The MYCIN project was to build a expert system that would

- 14 -

have the ability to diagnose infectious blood diseases in the same
way that a physician might perform the diagnosis. This project was
conducted by William J. Clancey, Bruce Buchanan and E.H. Shortliff.
These individuals created the most powerful expert system known up
until that time. MYCIN is an interactive program that simulates
a medical consultant specializing in infectious diseases. It
engages in question and answer conversations, (lasting 20 minutes
on average) with doctors needing specialist help. The physician
asks MYCIN for advice on the identification of microorganisms and
the prescription of antibiotic drugs and also for explanations of
its advice expressed at the appropriate level of detail.

MYCIN's explanatory capability was not put in merely for show. It
enabled the physician to rationally decide to either reject or
accept the program's advice; it allows non-specialist doctors to
learn about infectious blood diseases; and it allows human
consultants to make improvements in the program. The program
itself was designed as a program providing advice and physician
support rather than having the complete knowledge to give complete
diagnosis. The MYCIN program gave the physician the capability of
asking how a particular diagnosis was determined where upon the
program would respond with all of its decision criteria and
decision points or the physician could ask the machine why it was
requesting a particular piece of information. And the machine
would respond with its reasons for needing the information. The
question and answer dialogue, the why and how explanation
facilities had become hallmarks of all future expert systems.

MYCIN evolved into a program known as EMYCIN. EMYCIN was a program
that utilized all of the driving mechanisms of the original MYCIN
program but separated out the driving part of the software from the
knowledge contained in the software. EMYCIN was the first expert
system program with the capability of having a new expert system

placed into the system without having to change the user interface

- 15 -

of the driving portion of the software. This was, therefore, the

first so called expert system shell.

The next program of significance was written by John McDermott at

Carnegie Mellon University. McDermott was hired by the Digital

Equipment Corporation to build a system that would configure VAX

computers. This system began to be known as XCON. XCON was an

expert system built very much like the MYCIN system but with the

capability in knowledge to determine which pieces of hardware,

cables and so forth were required when a particular model of VAX

was ordered. This was a highly complex process and the XCON

program provided considerable savings to Digital Equipment

Corporation in their ability to deliver VAX computers. John

McDermott wrote the program beginning in the Fall of 1978 and it

has been expanded many times since then. The configuration effort

involves insuring that an order can be built and that all necessary

component parts had been included in the order as well as

determining just what part types, cable lengths, etc. were required

for successful assembly. A typical order would deal with 50 to 250

components and 25 to 125 pieces of information about each

component. It typically takes a thousand steps to determine

exactly what components should be included should be included in

the final package that is assembled and delivered to the customer.

Prior to the development of XCON, technical editors in

manufacturing reviewed all customer orders for technical

correctness and for completeness. This review required 20 to 30

minutes per order and still frequently resulted in systems arriving

at the customer sites without all the necessary components.

DEC had made three efforts to develop a configuration program using

conventional programming techniques and failed. Both because the

knowledge involved in the tasks proved very difficult to define and

because the components and assembly requirements kept changing.

- 16 -

The task is highly conditional. Tyoical configuration involved

1000 steps and there are on average three possible paths that can

be followed at each step. In order to write this system, McCarthy

created a new kind of programming language now known as Ops 5 It

is a knowledge base or ruled base system and currently contains

about 6,000 rules. It allows the VAX configurations to be created

in approximately four minutes. DEC has been so successful with

XCON that it has created numerous other expert systems internally

to be used for other tasks independent of XCON. In fact, Digital

Equipment Corporation may be one of the largest users of expert

systems in the world. Internally the DEC organization has more
than 300 people involved in AI that are in four different groups

in the organization. This is an indication of how DEC perceives
AI to be as strategic section of their company. DEC truly

perceives its corporation as a knowledge network.

Since 1980 artificial intelligence and expert systems has been

growing exponentially. One of the major factors in the growth of

expert systems has been hardware development. In the middle 1950's

at the very birth of AI, hardware was large very slow and extremely
expensive. In 1975 when MYCIN was being written, computers to run

expert systems probably cost mostly in the million dollar range.

By 1980, special purpose computers had been built to run expert
system programs and to perform artificial intelligence tasks.

However, these pieces of hardware were still in the $100,000 to

$300,000 range. In addition to that the language that most of

these programs were written in LISP was relatively difficult to

interface to conventional computers and to convention programming

languages. This was simply a characteristic of LISP. It had

nothing to do with the hardware. For this reason, most of the

business oriented application scientist must preferred to utilize

a conventional language and conventional hardware to produce their

expert systems.

- 17 -

In the middle and late 1980s, the hardware and language

capabilities have increased to the extent that we can now perform

expert systems in artificial intelligence research utilizing

conventional languages and conventional hardware. The power of

the PC has become so great that it far exceeds that of most of the

special purpose hardware of the 1970s. For this reason, expert

system programming and knowledge base systems have become feasible

for distribution in all areas of the Army environment. The current

focus of expert system is on the identification of taLxks to be

computerized that are above the clerical level and for which the

business objective can be evaluated positively.

2.5 Definition of Expert Systems.

2.5.1 This section will contrast transaction based processing and

expert system processing. Every computer program contains within

it some degree of expertise. It must be obvious that computer

programs perform tasks we can cor-.Lu.Jr to be reasonably

intelligent. In transaction bpsed programs, such as an accounting

program or an inventory management program, the system knows what

accounts to post if it is an accuritin program or it knows when

to reorder inventory if it is an inventory program. These

activities are manifestations of the program's expertise. Then,

how are transaction based programs different from expert system

programs? The difference is in a expert system program three

things are explicitly defined which are unique:

1) The knowledge is very transparent to the user. That is to

say when you look at a expert system program the user of that

program says, "That program is doing something smart. It is

doing something intelligent and I can see that intelligence

as it acts." In a transaction based program, typically the

expertise is not transparent to the user. In fact, the user

may well be confused by the computer program.

- 18 -

2) The second major difference between transaction based

programs and expert system programs is in an knowledge based

program the driving software is separate from the expertise

of the system. There are two pieces to this program that are

totally and distinctively separate. In an transaction based

system the expertise and the driving software for the program

are contained in a single program. It is extremely difficult

to see expertise in the program source code and distinguish

it from execution sequence and overhead statements. They are

all intermingled together. There is no separation.

3) The third difference between these types of software is

that expert system programs can explain how and why they have

taken a specific action. This is one of its most

distinguishing features.

These three differences are the characteristics we use to

distinguish expert system from transaction based systems.

Expert systems are also often called knowledge based systems.

2.5.2. When we refer to an expert system, we will be referring to

a class of software that is knowledge based. It has a separate

driving program from its knowledge. And it has knowledge that the

user perceives as being transparent. This means that when we look

at the knowledge we can understand it without special training.

2.5.3. An expert system is a software program. What we are doing

is not black magic. We're not creating something where nothing

existed before. We are simply writing software. And we're

learning how to write software in a more clever way so that we can

encode behavior of a specific expert from a narrow domain into that

program. We can encapsulate that knowledge so that other users,

people who may not be quite so expert, will have access to the best

expert's expertise in our organization.

- 19 -

Another distinctive aspect of the software is that it can explain

its behavior. It knows why and how it has reached a conclusion.

This is another glaring difference between traditional software

and expert system software.

2.5.4. What makes these pieces of software special? There are a

lot of different things that makes them special. But one of the

most important ones is the dynamic ordering of solution paths.

When we create software in a traditional sense the solution paths

to every problem are defined in the code. Computer programs

operate on the premise that each instruction is performed

sequentially unless the order is interrupted by branching

instructions.

This is completely different from the way an expert system

processes information. An expert system processes information

based upon data relative to the case under consideration. The

solution order of the problem is determined by the data of the

case. The solution order is therefore completely data driven.

This may be compared to table driven COBOL, where parameterization

of the program occurred as a result of data entering the system.

In expert systems, that idea is carried to an extreme so that the

entire program operates that way. Therefore the software itself

is simply a place holder. It contains generic knowledge about the

domain. When case information enters the program, it knows what

to do based on the facts of the case.

2.5.5. There are a lot of uses for expert systems. They are in

use in all industries: military, telecommunications, computer

companies, CPA firms, insurance companies, financial services

organizations, banks. Almost every topic that you name has an

aspect of expertise to be emulated in expert systems. Modern

expert systems draw from academic disciplines of all types:

- 20 -

psychology and the social sciences, philosophy, management sciences

and mathematics as well as engineering and computer sciences. All

of these disciplines come together to form what we know today as

the field of Pxpert systems.

2.5.6. An expert system shell is a generic piece of software that

composes the driving software of the expert system, but which has

no knowledge embedded in it. The difference between an expert

system and a transaction based system is that the driving software

and the expertise are in separate modules. The driving part of the

software is called the shell. There are many of these which are

commercially available ranging from very large and expensive to

quite small and moderate in price. The numerous shells on the

market make selection of the "right shell" difficult but, the

selection of a shell is a topic for another discussion. Let's note

here though that there are substantial differences in shells. A

shell is most useful for the prototyping phases. Later, a special

purpose shell is often created for specific applications.

The architecture of an expert system may be conceptualized as two

large boxes showing the division between the driving software and

the expertise as shown in Figure 2-1. The inference engine is

nothing more than an interpreter. It has the ability to interpret

and order rules and facts to solve problems. It's an interpreter

in the strictest sense just like you might have an interpreter in

a computer language. As facts are input to the system, they

activate rule clauses (we will look at a rule in a moment) as the

facts match the clauses. The pattern matching process is the

essence of the operation of the inference engine.

2.5.7. The rule base contains the expertise of the expert system.

This is the domain knowledge. Rules are generic in the sense that

they do not refer to any specific case, but rather they hold the

- 21 -

Lerence Eng L Rules
... -............

Shell Knowledg{Shell41..=..=-Bass'l U r o ~ ~c.............c ,D User Interface [F acts

User Agenda

Figure 2-1. Expert System Architecture

- 22 -

domain knowledge for all possible cases that might be analyzed by

the system. In this sense then they ara place holders in much the

same sense that a variable name would be in a traditional program.

They are much more complex place holders when compared to variables

in that they may have a number of clauses. These clauses may

themselves contain variables. In larger shells, the rules form a

rather complex programming language. A rule may look like the

following:

IF (personnel fill is high)

and (equipment fill is high)

and (basic load is on-hand)

and (unit training is complete)

and (equipment is packed)

THEN (unit is combat ready)

and (unit is ready for port call)

and (request port call from MTMC)

2.5.8. The fact base is the collection of attribute values that

describe the case that you're studying. In other words, this is

the input. It comes from the user. It may be information which

comes from a human user in a question and answer dialogue or it

may come from a machine user such as a computer database, as we

discussed under user interfaces. As we said earlier, rules are

place holders, so once facts enter the system, they find the rule

clauses which match. When they match with a rule clause, they

activate that clause of the rule. When all conditional clauses of

a rule have been matched, we say the rule fires.

2.5.8.1. There are several major ways to represent knowledge (or

expertise) in an expert system. The most commonly used are: rules

- 23 -

and objects (frames)4 Even though the expertise. in the "rule

base" also be represented in "objects," we will typically still

call it a rule base. More correctly it should be called a

knowledge base, technically this includes the fact base (see

below.)

Rules are methods of organizing expertise in a series of IF/THEN

statements as shown above. objects are a way of organizing

knowledge in a "frame" of attributes that describes the object with

emphasis on default values. An object is a collection of

attributes that define an entity by listing it characteristics.

Objects usually are defined hierarchically, top down, with class,

sub-class, and instances. Objects are connected with directed

arrows to form a semantic network. The semantic network defines

inheritance properties for the objects. In this method, lower

objects need only to be described by differences from their parent

because the parent characteristics are "inherited" to the child.

These inherited properties are the default values for the child

object. For example, we could define the class object of mammal,

a sub-class object dog and instance of a specific dog of Buzzy.

The properties defined in mammal do not need to be specifically

defined for Buzzy, because they are inherited through the semantic

network from the class mammals.

2.5.9. When facts enter the system they activate rule clauses.

When all clauses of a rules are activated, the rule fires which

activates the conclusion part of the rule. This conclusion will

either activate further rules or give output to the user. The

process of activating one rule then another is called chaining

because the inference engine is chaining from one rule to the next.

Chaining may be either forward or backward, depending on the way

4 An object and a frame are essentially the same thing. In
this guide, we will use "object." Either could be used
interchangeably in most cases.

- 24 -

the inference engine is written. Forward chaining and backward

chaining are not equally simple to implement in software. Backward

chaining is easier and is the usual type of chaining in the cheaper

PC shells. In addition, certain classes of problems are more

appropriate for forward chaining and others are more appropriate

for backward chaining.

2.5.10. A simple example of how an expert system works is to

consider a truck mechanic. Suppose you take your HUMV to the motor

pool for repairs. The reason you go to that individual is because

you have expectations that he has experience in repair of HUMV's
which will enable him to diagnose the problem. This experience is

his expertise and corresponds to rules in the knowledge base. When

you give him the symptoms of the way your HUMV is acting, you are

providing the facts the mechanic will use to solve your problem.

He can then make the appropriate repairs to the vehicle. This is

precisely the way an expert system works. In fact, expert systems
were designed to emulate this type of problem solving human

behavior.

2.6 This Guide.

The remainder of this guide will be to provide a framework and

flexible methodology for the develop of expert/knowledge base

systems. We want to give you a grab-bag of chosen techniques that
you can utilize in the Army environment to develop and utilize

expert systems effectively. It is our hope that you will see this

as a new way of thinking about problem-solving and a new way of

programming. In fact, we must keep in mind that all computer

programs contain knowledge and expertise. The way that knowledge
and expertise is encoded into the computer program is the issue.

Expert system programs, encode knowledge in a rule format that

allow programs to process symbols more than numbers. The knowledge

is captured in rules that are reasonably easy for a human being to

read and to understand, in contrast to the complex if/then

- 25 -

statements that would be in FORTRAN or COBOL program.
Characteristics of expert system programs, in summary, are that
they are the separated driving mechanisms or inference engine from
the knowledge base and they have the capability to explain
themselves with both how and why responses and explain neobaninAs.

-26-

Chapter 3

Overview of the znowedge Baso
Systems Development Sethodology

3.1 Zntroduction

The methodology for development of .xpert systems is somewhat

different from the system development life cycles for traditional

transaction based processing system. In the expert system

methodology, processes replace phases and stages and during system

development dynamic activation of processes allows the system to

evolve through a series of iterations. Each iteration is a well-

defined process, but the number of cycles or iterations through

these processes is determined only by the developed system, and/or

the evaluation taking place through the development.

3.2 Traditional software Development Model.

The cornerstone of software development is the concept of software

development metho4ology. The traditional (waterfall) software life

cycle development model is shown in Figure 3-1. This model defines

the basic phases of a software development project and describes

the output of each phase. Closely associated with the life cycle

model is an lccompany.ng project management technique that relies

on reviews at th. completion of each stage to establish a true

status of the development project.

The use of the life Cycle model has helped to relieve the software

crisis. But there are still rather severe fundamental problems.

First of all, the traditional life cycle model is linear. The use

of this traditional life cycle model assumes that each step can be

completely an* correctly implemented before moving to the next.

Specifically, it makes the assumption that one can completely

understAM all of the systems requirements and that these can be

described and derived at the beginning of the project.

- 27 -

System
Requirements.'"-

Software
Requirements

Preliminary
Design

Detailed
Design

Code
and

Debug

Test and
Pre-Operations

Operations
and

Maintenance

Figure 3-1. The Waterfall Model of Software Development
- 28 -

Unfortunately this assumption is invariably incorrect, because it
is very difficult for either the user of the software or the

developer of the software to know precisely what the full

requirements of the software will be. In most cases, some portion

of software must be developed and utilized before anyone can really

understand what needs to be done.

3.3 Iterative Development Model.

The expert systems development life cycle is based on a principal
of iteration of software development. Iteration is inevitable in

any large software development project; but it's difficult to

control this iteration when the linear standard software

development life cycle model is used. The expert systems
development methodology is specifically designed around the

assumption that requirements definition cannot be done in the
beginning of the project but rather must be an ongoing process

throughout the development project. Therefore, in expert systems

development we have consciously chosen to utilize a development

life cycle that is nonlinear in nature. Figure 3-2 provides an

overview of the development methodology utilized in expert systems

development.

Observe that the methodology in Figure 3-2 is a nonlinear process
and is designed for iteration through various stages many times.

The methodology is based on the premise that the full design of the
software can only be accomplished by a design-build-test cycle with

feedback from users in order to build a system that is fully

responsive to the requirements. In this way, the project can be

controlled to reduce both technical risk and cost risk since the

direction of the project can be shifted during any of the numerous

review periods in the cycle.

For example, in the problem definition and selection stages, an

organization could cycle through the processes of problem

--29 -

8.2 E
T0 C0

a. Ca

0

I6

- 30 0

selection, team selection and pilot projects several times, perhaps
with competing projects, until the particular project is selected.
Similarly, it is anticipated that the subcycle of knowledge
acquisition-design-prototype will be repeated several times in
every expert systems project. This interactive nature of the
development methodology is what gives it the tremendous power to
produce implementable systems that satisfy users.

3.4 Detail Development Methodology.
The development methodology shown in Figure 3-2 has been
operationalized as shown in Figure 3-3. In this figure the
development methodology is shown as consisting of five basic steps:
requirements definition, solution definition, design and build,
test, and transition. These five stages are the five stages of any
system implementation methodology; however, the differences are not

in the stages, but how they are implemented.

3.4.1 Requirements definition. In the requirements definition
phase several activities must take place. The project initiation
phase (refer to Figure 3-3) is a preliminary phase to provide the
motivation for the need of a system. This is a nebulous phase when
the project is in its embryonic stages. The deliverable from
project initiation is the project objective. This is a one page
description of the goals of the project and the problem it
addresses. In some cases several competing project descriptions
might be written and evaluated before the final decision is reached
on :he project.

Problem selection is the definition of the scope and the project
plan. This includes selection of candidate problems areas,
estimating the project and preparation of the work plan. This
phase can also include team selection, tool selection, and pilot

projects. A pilot project, which is simply a very small
development of a potential system, may or may not include a small

- 31 -

311111 --- imIJp !!4

LUWUU

CC

a .

-32-

amount of knowledge acquisition. Evaluating competing project and

determining the cost benefit of a project will also be conducted

during this phase. Documentary deliverables during this phase

include: the system scope and the project plan. Additionally,

there may also be a systems specification. The team for

development of the system should be assigned during this phase and

the tool acquired if necessary.

Because of the iterative nature of the development cycle, the
requirements definition phase overlaps into the solution definition
phase. As specifications are being prepared, solution activities
will be in progress. In addition, repetition of requirements
definition might be necessary after results of analysis or pilot

projects are complete.

3.4.2 Solution Definition. The solution definition phase provides
direction in designing a system which can be integrated into the

using organization's environment. To be sure, solution definition
overlaps problem selection, team selection, and pilot project

phases; but solution definition's primary purpose is to formulate
the integration strategy and to select a delivery platform. This
will require understanding of the knowledge environment. This

phase usually includes a small amount of knowledge acquisition and

preparation of a preliminary knowledge model. The knowledge model
will be modified during the design and build phase, and it is
necessary here only to prepare the model sufficiently to find the

delivery solution. Deliverables from this phase include: a

decision on integration strategy, delivery platform, and the

preliminary knowledge model.

3.4.3. Design and Build. There are four major steps in the design
and build phases: knowledge acquisition, knowledge modeling, design

and prototyping. In knowledge acquisition, the knowledge of an
expert is discovered and placed into a form that can be put into

- 33 -

the software. In attempting to understand knowledge from an

expert, the process will often also include knowledge modeling.

The knowledge modeling procedure is understanding the underlying

structure of the knowledge from an expert and it often takes the

form of diagram that can be interpreted to show the knowledge flows
and the process that an expert goes through in his decision making

process.

Knowledge acquisition and knowledge modeling lead to the next step,
system design. System design is the process of determining the

actual code modules that will be utilized to produce the expert
system. Of primary importance in this phase is the design of the

user interface. The design of the user interface will often be the
difference between a system that is accepted and one that is
rejected. The interface design will also often determine the code
modules breakdown for the system. The code module breakdown form
natural work units that can be worked on by several programmers in

the team or sequentially by a single programmer.

The actual programming of the code modules is the prototyping

phase. In the prototyping phase, we intertwine the process of
system design and programming with feedback to the knowledge

acquisition phase. In the prototyping phase, a system evolves

interactively between the knowledge engineer and the domain expert
by creating a portion of the program, allowing the expert to
evaluate it, and then using the evaluation from the expert to
suggest the direction of the next phase in the prototype. During

this evolution process, the prototype may undergo drastic revisions
as the problem is better understood by the builder and the
knowledge acquisition process is better understood by the domain

expert.

This new approach does not eliminate the need for structured

programming techniques, however some application require more

- 34 -

design process and may be more of a design problem than an
implementation problem. Expert systems are certainly in this
category. These design problems require that programming systems
allow the design to emerge on the basis of experimentation with the
program so that in effect the design program and program develop
together. A prototyping approach to programming amplifies the
programmer in the interest of maximizing his effectiveness while
solving these design problems. In effect, the prototype becomes
a dynamic specification of the system and changes rapidly as the
domain expert and the knowledge engineer understand the problem and
themselves better.

One of the reasons why this prototyping methodology is required is
that experts or other users do not always understand exactly what
they want or how they perform certain tasks. Experts for example
will tell you that they perform a task in a certain way when in
reality they do it another way. The reason is that they often
times do not themselves understand exactly how they are performing
a knowledge intensive task. This creates a "knowledge acquisition
bottle neck" because the success of the knowledge elicitation from
an expert determines the effectiveness of the system.

The knowledge acquisition bottleneck is also the reason for failure
of many traditional systems. In traditional systems, this failure
will often go under the disguise of "inadequate or improper
requirements specifications." Many a programmer has been heard to
say "Why didn't you tell me that in the beginning?"; only to hear
the answer "You didn't ask me." The iterative development is
designed to reduce the frequency of occurrence of these kinds of
misunderstandings by allowing the program to evolve through a
series of iterative stages, rather than attempting to completely
specify all the requirements for the program in a requirements
definition at the beginning of the project.

- 35 -

Deliveiables during this phase of the project are the prototypes

that are prepared by the knowledge engineer and the expert. As the

prototype begins to home in on its system to be implemented,

consideration must be given to the implementation of the system.

3...4 Testing and Transition. Implementation of the system

requires thorough user testing and evaluation before the system is

released. This user testing takes several forms. At the same

time, experts should also be evaluating the system to determining

its validity with respect to its problem solving. User testing and

expert knowledge based validation are discussed in the evaluation

methodology in volume 2 of this series. During this phase,

however, several deliverables are required. An implementation plan

and a user acceptance plan as well as a knowledge based validation

procedure are required in order to validate the system.

Technical documentation, programmer as well as user documentation,
will be required. During this phase a training plan should also
be developed to train both users on the system as well as

maintenance staff. At the conclusion of testing an acceptance will

be required. At this point the knowledge base for the system

should be validated, acceptance user testing should be completed,

and the system should be installed, deliverables here include an

installation report and various training activities to train the

user staff and the maintenance staff. The last step in the

transition phase is a final report and overview of the final
accepted system. This report is reviewed by management of the

builder and user groups.

3.5 Management Activities.

Figure 3-4 shows some of the management and quality assurance

actions that are required during the development cycle. Management

is required to perform both formal and informal reviews of the

system as it's being constructed. Informal reviews include the

- 36 -

I I I I I I i

- I1 1

-37 -
= J> ii J

,,i I I

., i

review of project objectives, approval of project scope, possibly

also a project budget at this point. During the prototyping phase

management should also informally review each prototype to make

sure it conforms to the objectives of the project. Formal reviews

of the project include a review and approval of the recommended

solution which is generally in the form of a requirements

definition or solution definition document. To review and approve

the implementation plan the training plan and knowledge based

validation plan and finally to review and approve the final

installation report.

Quality assurance actions are also important throughout the

project. Informal quality assurance review is required for

security requirements on the system, and to review the

implementation, in particular to determine whether or not the users
are satisfied with the system. Formal reviews for quality

assurance include a review of the project estimates and the project

plan to review and approve the recommended solution along with

management of the organization. The combination of management and

quality assurance actions insures a smoothly running project.

3.6 Route Maps.

Creating a route map is the process of defining a sequence of

events which will lead to the completion of an expert system

implementation. The fundamental premise of the iterative

development methodology is there are an unlimited number of
variations of the work plan. The construction of the route map

specifies each stage to be conducted and the number of iterations

it is to be repeated.

Figure 3-5 shows the steps in constructing a route map through the

methodology. The chapter notations beside each box is the chapter

or chapters in this development methodology where the process is

discussed. The organization profile in Figure 3-6 is an initial

- 38 -

ch 3 ch 3

ch 3
-Jch 4

Phases and Modules ch 3

Teem.Seection Major Estimating
Shell Selection Parameters

Ich 5 c

T ch 6

- -Estimated Estimated
Work Breakdown Effort In
Structures & Man-days

R s uc sch 4 ch 4

Project
Workplan

Figure 3-5. Route Map Creation
-39-

xw >
w <w 0j 0a: 2I w

0 t7<

a.

2 C ,

w

.
z
oCC

0 £U

Cm,
0 0 e

00I

w l

ww

-40 -

step in the project initiation activates to evaluate the mission
and duties of the potential sponsor organization. This becomes the
needs and expectations for the system. Figure 3-7 shows a task
profile to evaluate the tasks and subtasks of the organization.
This will also show how the proposed system might affect the
organization after implementation. Both of these are used as input
to define the scope of the expert system. The scope will be used
in the creation of the route map through the methodology to define
a project. Careful examination of these environmental factors
early in the project will prevent disappointment in the expert

system later.

- 41 -

R LI

LL

0

z

LUU

ww >i

z) co U
SwZ

o - LA. U
0 LLU > LM

U, 0 0
-J 0 LL cog~z LLI

0 Be
oi F 0m

-42 -

Chapter 4

Project Initiation and Planning

4.1 introduction.

Project initiation begins with identification of problem types that

require the style of programming underlying expert systems. Keep

in mind that expert systems technology is a programming approach

and therefore is neutral to the problem it can solve. But some

classes of problems can be solved much easier with expert systems

programming than with conventional programming. This chapter

discusses the principles that can be used to identify those

problems that are easier to solve with expert systems programming

than with conventional programming. The chapter also provides

procedures for planning a project, performing estimation of the

resources required for the project, and creating a work plan for

the project.

4.2 Identification of Opportunities.

Expert systems are an approach to programming that enable computers

to assist humans in analyzing and solving complex problems. They

extend the power of computers beyond the transactional problems and

support decision making activity in semi-structured decision making

environments. By encoding the knowledge of human experts, the

computer can assist in diagnosing and troubleshooting failures in

machinery, assisting in mobilization planning and scheduling for

maintenance activities.

Equally important, some expert systems techniques can improve the

human-machine interaction by making computers easier to use in such

areas as database query. Another characteristic of expert systems

is they make the knowledge in the system easy to revise by non-

programmers. The system is easier to maintain and to understand

- 43 -

because the rules which represent the knowledge of the system are

written in an English-like language which almost anyone can

understand. Thus programming in rule based systems can become

"programming for everybody."

Let's look at an example of an expert system in order to understand

the problem characteristics which are important to identifying an

expert system application. The application is KLUE, an expert

system designed and built at 3M Corporation in Minneapolis. The

systems objective is to transfer knowledge from process engineers

to process operators at 3M. Process engineers at 3M define

specifications for processes that ensure acceptable product

quality. Various measuring devices are also used to measure

parameters to determine if the processes are in control. When

operators notice a significant difference in parameter readings,

they must call a process engineer to diagnose the problem.

The expert system is designed to replace the need to call the

engineer for most problems. When operators notice variation in

parameters, they can go the expert system and enter the current

readings. The expert system then will help them diagnose the

problem without the need to call an engineer. The system is now

in use in process diagnosis, technical service and training. The

number of users is continuing to grow.

4.2.1 Motivation to Build Expert Systems. What was the motivation

to build KLUE? 3M recognized that process engineers were a scarce

knowledge resource. The time lag of getting an engineer to the

malfunctioning process was costly because of the delays in

production. The motivation to build KLUE relied on business

benefits that extended the knowledge of experts to "novices" thus

enabling the novices to perform a task once performed by engineers.

This is the first problem area that expert systems can address:

there is a shortage of knowledge in a narrow domain of expertise.

- 44 -

Implementation of this knowledge often requires some judgment to

be exercised in its use.

KLUE supports decisions that must be made by several individuals

many times. These decisions have a measure of repetition

associated with them that is both cross-secticnal as well as
temporal. This characteristic of having to make a relatively large
number of decisions simply means that the knowledge to make the
decisions will be scarce and the need to make the decisions will
be high. It makes no sense to spend the resources building systems
to support a single decision maker who makes a decision once or
very few times. The repetition of the decision is not high enough

to provide a "return on the investment in the system."

The KLUE system expanded the knowledge capabilities of the process
operator. The process operators had a process engineer at their
disposal to ask hypothetical questions. The result was that the

system served as an excellent training vehicle both for new process
engineers and process operators. Any area of the organization

where on-the-job-training is important is a potential expert

system. In addition, technical support and maintenance personnel.
began to use KLUE. Thus, the knowledge of the process engineers
was distributed around the organization.

KLUE also provides the process operator with another view of his
tasks. Organizations divide labor into categories that sometimes

cause individuals to function within their own small "world."

These subdivisions in the organization can cause conflicts in
organizational goals. The expert system can help break down these

barriers by giving operators another "view of the world." Thus in
situations where various units of an organization must coordinate,

the expert system can be helpful.

- 45 -

Expert systems are viable only when experts can be identified in
a relatively narrow domain of expertise. The motivation for KLUE
was founded in the principle that engineers knew more than
operators and more engineers were needed to perform their tasks.

The difference between the "novice" and the "expert" was
transparent to all who looked at the problem. The expertise was
the type that could be codified into rules that look like the

following:

IF (washer warning light is red)

and (water dribbles)

and (pressure gauge reading less than 40 psi)

THEN (pump malfunction).
Thus, problems that can be put into expert systems have the
following attributes: several experts that can be identified, all
can agree that they are experts and their knowledge can be codified
into rules. The task supported is also a mental task as opposed
to a physical task. Since expert systems are software, they
typically support mental activities.

5

4.2.2 The Role of the System. The roles an expert system will
play in the organization after it has been implemented into the

organization are important to determining if an expert system is
right for an organization. We must determine the future and the
current missions of the organization, then look at the proposed

task and determine the value of this task to both present and
future operations.

The expert system usually operates in an expert role supporting
users of the recommended actions from the system. KLUE for example
served both as a communication and translation device between

5 Although one might argue that robotics is an exception to
this characteristic, the expert system part of a robot typically
is handling mental tasks that support the robot, and not any
physical tasks.

- 46 -

different task domains: the engineer and the operator. The system
might also support human reasoning, or perform limited reasoning.
For example, KLUE can be used to determine the cause of problems
with a process from parameter values.

The system might also perform knowledge accounting by maintaining
a history of the decision making process. For example, KLUE stores
each session into a file that can be looked at later by engineers.
The engineers can look for repetitive problems that might be cause
for revising an entire procedure. Engineers are freed to do this
type of analytical work because they are not responding to trouble
shooting calls the system is handling. The accumulated knowledge
can thus be used to improve the system.

Another role of the system might be knowledge synthesis, gathering
knowledge together for another expert system or human to analyze.
KLUE does not do this but another system ACE, designed by AT&T,
pulls together diverse data from numerous switches and presents
them in a coherent manner to a maintenance technician. The system
can detect switches that may fail soon and therefore the system
presents alarms to the technicians. This type of synthesis
prevents a technician from having to read all the raw data in order
to detect impending switch failure.

4.3 Bstimating the Project and Preparing the Workplan.
Estimating the project requires the preparation of a project scope.
The scope of the project will determine the size of the system.
The scope will also determine the level of resource effort required
to accomplish the project. Estimating the level of effort for any
computer system development is a difficult problem at best,
impossible at worst. There is very little data with which to build
models on the development of expert systems; this makes estimation
of expert systems extremely difficult. The results for estimating
projects given in this chapter are from the experience gained in

- 47 -

building 10 expert systems that have been built at Coopers &

Lybrand, one of the world's largest public accounting firms.

4.3.1 Estimating the Number of Rules, Frames and Objects. The

most difficult stage in the estimation process is to estimate size

of the final expert system in terms of the number of rules, frames
and objects. This estimate is key because this single number will
be used to create the reminder of the estimate and work plan.
There is no easy way to do this; but the following procedures are
offered: (1) have single expert estimate the number subjectively,
(2) convene a panel of experts to estimate the number, and (3)
perform a pilot project to get experience then use the expert's
estimate. Any estimate, no matter how much research is done, will
ultimately be only a forecast subject to the subjective biases of

all forecasts. But we must start somewhere.

4.3.1.1 Single Subjective Estimate. In making an estimate using
a single domain expert, try to choose the best expert available.

Have the expert make three or four estimates over a period of a
week, with each estimate separated by two or three days. Take the
average of the estimates given by the expert as the size of the

system.

4.3.1.2 Panel of Experts. Enlist a panel of several experts of
up to 10. Give each expert a copy of the project description
prepared in the project initiation phase (see Chapter 11 for

project description) so that each expert has an idea of the scope
of the uses and objectives of the system. Have each expert make

an independent estimate of the size of the system. Collect all the
estimates and summarize into a table without identifying which
expert made each estimate. Ask each expert to reconsider his
estimate in light of the collective judgment of the panel. Repeat
the process of collecting the second estimate and returning the
second round estimates to the experts and ask for a third estimate.

- 48 -

After the third round average the estimates to get the size
estimate for use in projecting the scope of the project.

4.3.1.3 Pilot Projects. A pilot project is a small development
of a candidate expert system. The pilot project can be a microcosm
of a full development of an expert system. Pilot projects
generally consist of 2 to 5 weeks of effort by an expert or
knowledge engineer or both to build a simplistic version of the
projected system. The results of the pilot are then used to
estimate the size of the project, costs, and technical risk of a
full development. Pilot projects are primarily done on projects
that are expected to be rather large and where more accurate data
are needed in the estimation process. A pilot project usually also
includes a cost benefit study as a portion of the pilot. (See
Volume 2.)

4.3.2 Natimating the Effort for Project. This resulting estimate
of the number of frames, rules and objects from the above procedure
is the number which is utilized to enter Table 4-1 to determine the
effort and schedule for that system. This table has been prepared
based on 10 expert systems that have been developed by Coopers &

Lybrand.6

These estimation guidelines assume that a trained knowledge
engineering team is available to perform all the work and the
problem is of medium difficulty. Therefore, the times in Table 4-
1 are probably fairly close to minimum times that would be
required. The table also assumes that we are working on a project
of medium difficulty. Projects of extreme difficulty would take
longer, projects that are fairly simple might take a little bit
less. The basic assumptions in Table 4-1 are an experienced team

6 Remember any estimate from this table is still subjective

even though it may appear to be very accurate.

- 49 -

Table 4-1

Estimated Effort for Expert System Development

Rules KRules MM TDEV FSP EX

200 0.2 4.8 4.8 1.0 1.4
300 0.3 7.0 5.8 1.2 2.1
500 0.5 11.3 7.4 1.5 3.4
800 0.8 17.4 9.3 1.9 5.2
1000 1.0 21.5 10.4 2.1 6.5
1500 1.5 31.4 12.6 2.5 9.4
2000 2.0 41.0 14.5 2.8 12.3
2500 2.5 50.5 16.1 3.1 15.2
3000 3.0 59.9 17.6 3.4 18.0
3500 3.5 69.2 19.0 3.6 20.8
5000 5.0 96.5 22.6 4.3 29.0
12000 12.0 218.4 34.6 6.3 65.5
20000 20.0 352.8 44.3 7.9 105.3

Key: Rules - number of rules frames and objects
KRules = 1000 rules; MM = man-months; TDEV -

calendar months for development; FSP = full time
software personnel; EX - man-months of expert time.

performing the work, and a medium difficulty problem as perceived

by the development team.

4.3.3 Preparing the Workplan. Determining the work breakdown

structure and the distribution of the effort of the project is the

next step in making the project time and materials estimate. The

task for creating an expert system has been broken down into six

basic steps: Requirements definition, solution definition,

knowledge acquisition, design, prototyping, and test/transition.

These steps are shown in Table 4-2 along with the allocation of the

resource effort required in each phase. Table 4-2 shows both

effort distribution, that is how the man months (MM) should be

distributed, as well as the schedule or time of development (TDEV)

distribution. Both of these charts are based on the software

- 50 -

personnel man months and the development time for the project from

Table 4-1.

We usually call systems with 800 rules or less a small system.

Similarly, intermediate systems are 1000 to 3000 rules, medium are

3000 to 8000 rules and large are 8000 and larger. Use these

designations and the actual values obtained from Table 4-1 to

estimate the distribution from Table 4-2.

Table 4-2

Profile of Effort and Schedule by Product Size

System Size

Phase Small Interm Medium Large

Effort (MM)

Requirements Definition 6 6 6 6
Solution Definition 7 7 7 7
Knowledge Acquisition 20 20 20 20
Design 7 7 7 7
Prototyping 45 42 39 37
Test/Transition 15 18 21 23

Totals 100 100 100 100
Schedule (TDEV)

Requirements Definition 8 8 8 8
Solution Definition 8 8 8 8
Knowledge Acquisition 20 18 16 14
Design 7 7 7 7
Prototyping 40 38 36 34
Test/Transition 17 21 25 29

Totals 100 100 100 100

An can been seen in the table for intermediate sized systems,

requirements definition requires 6% of the effort that is expended

but will utilize 8% of the development time. Solution definition

- 51 -

will require 7% of the effort but 8% of the schedule time.

Knowledge acquisition requires 20% of the development effort but

only 18% of the schedule time. The design process requires 7% of

development effort and also 7% of schedule time. Prototyping phase

requires 42% of the effort, but 38% of the schedule. The

test/transition phases require approximately 18% of the development

effort, but 21% of the schedule time.

4.3.4 Putting it all together in an example. As an example of how

we might estimate a project, let's assume that we have estimated

this project will be an expert system that will have 1,500 rules

in the system. Based upon this initial estimate of rules we can

enter Table 4-1 and determine that this will require 31.4 man-

months of full time software personnel and 9.4 man-months of domain

expert time. In addition, schedule time to complete the project

should be 12.6 months.

Using the guidelines for Table 4-2, we conclude that a 1,500 rule

system is an intermediate size. We enter Table 4-2 with

intermediate to obtain the following work breakdown structure for

the effort in programming:

Requirements Definition 6% 1.9 MM
Solution Definition 7% 2.2 MM
Knowledge Acquisition 20% 6.3 MM
Design 7% 2.2 M
Prototyping 45% 13.2 MM
Test/transition 18% 5.6 MM

In addition to the approximately 2.5 full time software personnel

required on the project, about 9.4 MM of domain expert time will

be required. This can be one or several experts. The time must

be split between the knowledge acquisition sessions and the

evaluation of the prototypes.

- 52 -

Table 4-1 shows this project should take 14.5 months of calendar

time to complete. The work breakdown structure is not performed

sequentially, however. Rather, it is in iterative cycles. We try

to deliver a prototype about every 60 - 90 days for evaluation by

the expert or user community or both. Using this guideline, an

approximate one year project will have 4 or 5 prototypes. For this

project we decide to have four prototype deliveries on the project

and divide the knowledge acquisition, design and prototyping into

four equal parts.

Figure 4-1 shows a Gantt chart that provides the schedule for the

activities of this example project to build an expert system.

Notice how the various tasks have been incorporated into a project

schedule that includes each subtask. Some are sequential and some

can be done in parallel. The prototyping phase overlaps design as

well as knowledge acquisition. The test/transition phase also

overlaps the prototyping phase by 1/2 month or so. These overlap

periods provide times when the team interacts very heavily to get

the prototype running properly. The last two months of the project

are spent in testing and validation. Testing and validation of the

system, particularly knowledge based validation will be discussed

more thoroughly in Volume 2, Evaluation Methodology.

This example provides a straight forward analysis of what an
intermediate sized system might look like in estimating the project

and defining work breakdown structure and schedule.

- 53 -

CM

II I

P- P

CC

-54 -

Chapter 5

selection of the Development Team

5.1 Introduction.

The makeup of the development team is critical to the success of

the project and to the long term viability of the expert system
produced. Team members should be selected for their job related

skills. Expert system shells for building the system need to be

selected based on a set of multiple criteria to get the best expert
system shell for the current project. This chapter will discuss

the requirements that are necessary in selecting the individuals

to serve on a team: knowledge engineer, human experts, and users.

The term knowledge engineer has been coined to describe the

professionals who carry out the expert system development process.

He/she is the "lead builder" of the system. In a more conventional

development, he/she might be called "systems analyst" or

"analyst/programmer." When the expert systems development is

compared to a more traditional development, many differences are

found which suggest the knowledge engineer must possess

competencies not previously required. A broader range of skills

is required and these skills go beyond technical programming or

analyst knowledge in the computer science field.

The domain expert is the individual(s) on the team possessing the

expertise of the domain to be emulated. She/he is the knowledge

source. The domain expert is obviously the key individual on the

team, since without him/her there -.ill be no system.

The user is a representative of the using community. She/he will

provide the user perspective to the development team.

- 55 -

5.2 Selection of the Team.

5.2.1 Appointment of the Team. The team members should be

appointed from two broad groups. First, knowledge engineer(s) who

is a specialist in the area of development of expert systems.

Second, there is a stakeholder group. This group may consist of
various members of the organization developing the expert system,

such as the domain expert community, middle management, top

management, and data processing department. These stakeholders may

view the project from the perspectives of users, decision makers,

knowledge sources, project champions, and skeptics (devil's

advocates).

Successful projects depend on the melding of all viewpoints of the

organization into the common goal of implementation of the expert
system. Various studies have shown the single most important

element in organizational acceptance of computer systems is

stakeholder involvement in the development of the system from the

beginning of the project. This has led to an extremely important
assumption in the selection of the team known as the stakeholder

assumption.

Stakeholder Assumption - key people who have a stake in
the success of the project should be actively and
meaningfully involved in shaping the project in order to
focus the project on meaningful and appropriate issues,
thereby increasing the likelihood of successful
implementation.

The team is identified and appointed which includes knowledge

engineers, domain experts, and users. The team is a vehicle for

actively involving the key stakeholders in the project. This team

is organized to make major decisions about the focus, methods,

hardware/software issues, goals, installations, and

testing/evaluation of the project. The team shares the
responsibility for decision making about system development with

the knowledge engineer by providing a forum for the perspectives

- 56 -

of the stakeholders who will ultimately be involved with the

implementation of the system.

At least four benefits in the project development accrue to the

project by having users involved in the development.
* The domain experts and users understand the goals and

objectives of the expert system as well as the

limitations of the system.
* There is much better communication among the knowledge

engineers, users and domain experts, thereby increasing
the quality of the system.

* The users and domain experts share the responsibility for

the system with the knowledge engineer and therefore

"care" for the system.
* The personal commitment of the users and domain experts

substantially increases, making it much more likely that
they will use the expert system.

5.2.2 Team Composition. It is important to form the right group
for the team. The team will become the core group of the project.
The size of this team would normally be expected to be a minimum

of three (knowledge engineer, domain expert and user) and a maximum
of about ten. Occasionally, a team could be two (knowledge
engineer and domain expert) when the expert is also the user. It
is not a good practice to have a team of one except under the

condition that the developer is also the only user. The reason the
expert cannot be his/her own knowledge engineer will be discussed

below. Of course, the core team may be expanded as necessary to

provide the appropriate level of effort by including more experts,

users, programmers, etc.

5.2.3 Ielotion of Knowledge Engineers. Selection of knowledge
engineers is relatively simple when experienced expert systems
builders are available. The assumption of this section, however,

- 57 -

is that you are selecting individuals for the team that do not have

specific experience in knowledge engineering. The objectives for

your selection can be long term, e.g. to build an expert systems

group, or short term for a single or few projects.

The knowledge engineer must have skills in the following areas:
interpersonal skills, analytical and problem solving ability, an
adaptive work style, some experience in the domaiL, and high
motivation. First, the knowledge engineer must have excellent

interpersonal skills so that he/she can lead and manage the team
as well as look after the requirements desired by the user. This

individual must understand how to elicit expert knowledge and what
the users of the expert system will want. The knowledge engineer
must have the ability to do interviewing so that he/she can

interview experts and users.

The knowledge engineer must be able to use his/her communication
skills to gain the confidence of the domain experts on the project.

This is not always easy. Many experts are initially concerned
about losing their jobs to computers and others have little
understanding about how computers work. The knowledge engineer

must therefore be willing and able to teach the expert about expert

systems to make him more useful to the project.

The knowledge engineer should be comfortable with at least one
computer language and such facets of computer programming such as

graphics interfaces, data base access, and nonstandard input and
output. The knowledge engineer should be a skilled analyst with

experience in breaking problems into their components, evaluating
alteonatives, and managing phased implementations.

The knowledge engineer must possess analytical skills and knowledge
modeling skills. They must have knowledge of expert system

architecture as well as the direction the application will be

- 58 -

taking. The knowledge engineer must have conceptual synthesis

capabilities to be able to take information elicited from the

domain expert, and then translate that into generic problem solving

mciels. These models can be captured into knowledge diagrams or

directly into the expert system rules.

She/he must also have a degree of enthusiasm for and knowledge of

the subject matter that the domain will be for the expert system.

It's extremely important that knowledge engineers working on the

system have some knowledge about the problem domain that will be

the basis for the application. The knowledge engineer should not

and need not be an expert in this area. If he is an expert in the

domain area there will be a tendency for the knowledge engineer to

superimpose his knowledge on top of the domain experts. This is

not good. However, if the knowledge engineer has no knowledge of

the domain the knowledge acquisition problem will be significantly

more difficult because the knowledge engineer will be unfamiliar

with vocabulary and various other aspects of the domain. It may

also cause conflict between the knowledge engineer and the expert.

Experts are individuals who tend not to like to have their time
wasted. When a knowledge engineer exhibits no knowledge whatsoever

of the expert's domain of expertise, the expert will tend not to

have respect for that knowledge engineer.

The knowledge engineer is the caretaker of the team and is the

leader of the project development. She/he must have the usual

skills of management and leadership and be able to balance various

personalities and egos on the team.

5.2.4 Seleation of stakeholders. The following general selection

criteria may be used in choosing user and domain expert members of

the team. Not all of these criteria can be met to the same degree

in every case, but these form a basic set for considering

stakeholder members.

- 59 -

* They represent interested groups, constituencies and

expertise.
They have the authority to use the system in decision

making situations.

They have a fundamental belief in the technology and

value of the expert system.
They are willing to make the commitment of time required

to "do it right."

5.2.4.1 Domain Experts. Experts that work in the application team

must also be carefully chosen. Some experts are not comfortable

with the design process. In addition, some experts have difficulty

with the type of introspective analysis required to accurately

communicate their underlying knowledge to others. Domain experts

should be chosen with the following characteristics in mind:
* A high level of competence in the problem to be solved.

* The ability to communicate internal problem-solving

process well.
* A flexible and inquiring intellectual style.

* Interest in the expert system building process and

willingness persist in the development.

* Absence of felt threat from the expert system.

* Interpersonal style amenable to interactively working

with team members.

It is imperative that the experts selected to operate on the

development team have the capability for expressing themselves well

and being able to communicate their thought processes in their area

of expertise. These thought processes will have to be prompted

from the knowledge engineer through various knowledge acquisition

techniques.

The domain expert should also have some enthusiasm for working on

the project. Domain experts that are hostile to the project will

tend to create a substandard expert system. However, it should

also be recognized that most experts will be hostile to an expert

system development project in the beginning. What must be

evaluated is how deep this hostility is and whether or not it can

be overcome through good knowledge engineering techniques.

5.2.4.2 Difficulty of Knowledge Engineering. The most difficult

part of knowledge engineering is realizing that experts often do

not know how they make decisions. The real decision making

processes used by an expert is much different from formal

knowledge. Many experts cannot discriminate between the two. It

is up to the knowledge engineer to discover the unique rules of

thumb used by the expert by cutting the formal outer layers of

knowledge.

Experts will have extreme difficulty performing their own knowledge

engineering. There are certain psychological blind spots that

exist in every human's mind, domain experts included. When experts

attempt to build their own system, they often build a system

according to what they think they do. In fact, many experts

perform tasks differently than what they have cognitively allowed

themselves to believe. In other words, experts often perform many

portions of their task inside their domain of expertise in a very

automatic way. And, they do not, themselves, understand that they

are performing certain components of the task so automatically.

As an example, consider driving down the expressway and noticing

a billboard alongside that expressway that perhaps advertises a
product that you have a need for. As you look at that billboard

you might understand that this billboard has been in that same

location for months, perhaps even years, and yet today as you pass

it, you see it for the first time. Why is that true? Because the

mind contains a filtering mechanism which filters out most of the

- 61 -

stimuli that come into our brain each day. If this filter

mechanism did not work, we would have no attention span whatsoever.
It would be impossible to do anything because every stimulus that
,came into our brain would distract us.

The brain has developed methods of filtering certain stimuli in

order to allow us to concentrate. We notice certain stimuli only

when we need them. This is why we can drive down the road past a

particular billboard for days, weeks, months, and years and never

see that billboard nor know that it's there until we have a need
for that product. Suddenly it pops out at us.

As another example, suppose you're going home from work. This is

an automatic process because you do it every day. You walk from

the office, get in the car, begin driving, generally speaking you
will have a particular route that you take home every single day.

And then as you're driving home one day you're about half way there

it suddenly pops into your mind that you should have gone by the
cleaners on the way home to pick up the cleaning.

Why did you forget the laundry? The reason is, again, that you
went into an automatic path in your mind. Your mind had certain

things that it did at a particular time of day and it does it that
way every day. This road map of decision processes of activities

that you perform in order to get home becomes an automatic,
everyday occurrence. You cannot change it without very willful and

conscious processes to make that change. In other words, if you
want to remember to pick up the laundry on the way home, you write

yourself a note and stick it in an obvious place so that you will

see it to remind you.

The brain does this because it can perform pattern matching
activities in long term memory much better than in short term

memory. The mind stores items in long term memory with a process

- 62 -

that psychologists call compiling. It is very similar to compiling

a computer program. Long term memory is maintained in the brain

in this compiled format. This is where pattern matching activities
take place most efficiently. It is here that automatic operations
take place. We never have to call them into short memory.

In order to retrieve long term memory or to "un-compile" these long
term memory patterns, an external stimulus will often be required.
These external stimuli usually require an evaluating mechanism to
assist the domain expert in articulating his knowledge. While it
is possible for some experts to do this alone, it is usually the
case that the process is much more efficient with knowledge

engineer assistance.

The point to be made here is that the domain expert will find being

his/her own knowledge engineer exceedingly difficult. The worst
part of it is that they will usually not even realize the
deficiencies in the system until someone else tries to use it. If
the expert is using his own system, he might be able to act as his
own knowledge engineer, especially if it's a small system, say 300
rules or less. However, as systems get larger, external
interaction with the domain expert will be required in order to
build the system that correctly defines the methods used by the

domain expert.

The team should appoint a chairman to direct the group. One of the
team participants should be designated as chair rather than a
knowledge engineer. Having a domain expert or decision maker as
chair of the group helps symbolize the responsibility and authority
of the team. The knowledge engineer must be the collaborator,
facilitator, and trainer. He commands a good deal of floor time;
however, the knowledge engineer can accomplish everything needed

in the project by working through the chair rather than by being

the chair.

- 63 -

Chapter 6

selection of the Expert System shell

6.1 Introduation

The expert system shell (or shell) is the development tool or

language in which the system will be written. A shell provides

development team support through the development interface and user

interaction through the user interface. The shell will define the

knowledge representation scheme used by the system, reasoning

method (forward or backward chaining), development platform,

delivery platform, and compilation capabilities for runtime

distriklitions. Remember, almost any system can be written in

almost any language; the key is to try to minimize the development

effort and time with an appropriate expert system shell.

Selection of the expert system shell for the development project

is based on a set of multiple criteria: problem type, user

interface, development interface, method of reasoning, development

platform, delivery platform, compilation capabilities, and vendor

support functions. Each of these attributes has a requirements

side and a capabilities side. That is, we have user interface

requirements to solve our problem, and each shell will have user

interface capabilities. As we look at each attribute, consider

first your problem requirements, then evaluate the shell on its

capability to meet your requirements. Usually, a single attribute
will cause overriding constraints on the shell selection, e.g.

delivery platform, -which limit the search to a subset of all

available shells.

We will discuss each of these criteria in turn in this chapter.

Observe that the objective of this section is not to select "the

best shell currently on the market" but rather to give you the

- 64 -

criteria with which to make the selection. Any survey of existing
shells would be incomplete and inevitably out of date since there
are hundreds of shells on the market today and more coming all the
time. By providing general principles, this guide will enable you
to make an intelligent and rational choice on any shell.

6.2 Shell Seleotion Method.

The task of selecting a shell for the development team is balancing

the domain environment with the capabilities of shells at an
acceptable cost. In order to make an intelligent choice of a
shell, there are two essential classes of information to gather:
requirements of the problem environment and capabilities of the
candidate shells. To select a shell, you must:

* categorize your problem type,
* define interface requirements,

* define platform requirements,
* determine shell characteristics of the shells of interest

and
* select the shell which best matches its capabilities to

the requirements.

6.3 Categorize your problem type.
The first step in selecting a shell is categorizing your problem
into a standard problem type category. Not all shells are
appropriate for solving all types of problems. The following

descriptions of problem types will enable you to categorize your
problem into one of the classes. Although almost any problem can
be solved with almost any shell, it is true that choosing a shell
that is particularly appropriate for your problem type will make
the development easier and faster.

A good deal of confusion exists in the selection of shells because
problem solving strategies and programming techniques in the shells

have been confused with application problem types. Other confusion

- 65 -

exists because not every problem can be solved with every problem

solving strategy. Therefore, it's well to learn a little bit about

problem types as well as problem solving strategies and programing

techniques that can be utilized in an expert system shell.

6.3.1 Diagnostio Problems. Diagnostic problems refer to problems

that involve making recommendations after asking the user a number

of questions. Diagnostic problems are characterized by situations

which are found malfunctioning in some way. To determine the cause

of the malfunction, the diagnostician must ask for an amount of

data, then based on the data describing the system state, an action

is required to put the situation back to normal. A physician

practices diagnosis when she asks questions of a patient with a

health complaint in the process of trying to determine which of

several disease organisms may be present. By the same token, an

auto mechanic practices diagnosis when he asks the car's owner

questions and conducts tests to determine what parts of the

automobile is causing a problem and how it should be fixed.

Frequently diagnostic systems will incorporate specialized

techniqu'es to make the application more useful to a particular

industry. For example, many financial systems combine diagnosis

with elenents of planning and scheduling to create a expert system

for recommending portfolios.

6.3.2 Monitoring 8ystems. Monitoring problems begin with input

and reacq one of a limited sets of recommendations. In a sense,

they are similar to diagnostic problems except diagnostic problems

are typically reached via backward chaining, while monitoring

problems are more often handled with forward chaining systems. A

typical monitoring problem might be watching a typical data stream

and alerting the user when an unusual pattern occurs. Thus a

monitoring system might collect data on telecommunications switches

and notify an engineer when test parameters indicate trouble at a

- 66 -

........... - " - -- " m m mnm m it r m l l=IEMO

specific location in the network.

Process control systems in manufacturing are typically monitoring

problems. These applications are frequently subdivided into open

systems and closed loop systems. Open loop systems warn the

operator that he or she should consider an action recommended by

the expert system. Closed ioop systems are where the expert system

analyses the problem and initiates the appropriate action on its

own.

6.3.3 Design Problems. Design problems involve selecting an

appropriate way to combine components. Configuration systems that

assemble a complete computer system from an initial set of customer

specifications is one example of a design system. Design problems

begin with inputs and then determine the constraints implied by the

inputs. A solution is then found that violates no constraints and

meets the objective of the initial problem. For example, if the

user requests a cooling fan with 3-inch blades that produces an

airflow of 5 cubic feet per minute, then all other designs are

automatically excluded from consideration. Conflict resolution is

the key programming strategy to a sophisticated design system.

6.3.4 Soheduling Problems. Scheduling problems involves ordering

a set of components and actions within a time sequence. These

problems typically involve discrete manufacturing scheduling (flow

shop scheduling) and on-demand scheduling (job shop scheduling)

applications. In all cases, the systems coordinate people,

machinery, and job tasks that must be accomplished within some time

frame.

For example, MOBPLEX has a scheduling module within it that

schedules the ranges, ammunition and transportation assets required

to bring a unit up to the proper readiness category for shipment

to the theater of operations. Scheduling systems require

- 67 -

constraint propagation facilities, conflict resolution truth

maintenance, and hypothetical reasoning.

6.3.5 Planning Problems. Planning problems are sometimes treated

as a subset of design problems and sometimes classified as

scheduling problems. If a problem involves specifying a set of

components that will be necessary for a plan (e.g., personnel,

resources, budget) then it may be very similar to the design

problems we have just described. If it involves developing a

schedule or interactively guiding the execution of a plan, it

should probably be considered a scheduling problem.

6.4 Define Interface Requirements.

6.4.1 User interface. The end user interface is another important

characteristic to look for when selecting a shell. Generally

speaking the smaller and simpler shells that run on a PC,
particularly those that do backward chaining, will only allow
question and answer dialogue as a user interface. These systems
require the user to enter a yes/no or multiple choice response to
the questions. This may be appropriate for many classes of
problems, particularly diagnostic problems, but it may .ot be
appropriate for an insurance underwriting system which is based
upon many different inputs. In this case, the user interface might
more appropriately be a business forms approach. At the same time
the output to the user might well be a graphic rather than simply
directions to perform some action.

Another feature of the end user interface that's very important is
whether or not the system provides for on-line help. Given the
nature of most expert systems' tasks it is highly desirable to have
on-line help features available inside the shell. Expert systems
as a technology imply the capability for explanation, namely to
explain to the user WHY a particular piece of information is
necessary and to explain HOW certain conclusions of the expert

- 68 -

system were reached. These explanation facilities to the user

should be present, and depending upon the kind of system you're

building, these features will vary.

Another end user important item is the response time of the

interface. These user interface considerations may well determine

how well the user accepts the system. So we must give

consideration to the amount of time the user spends interacting

with the system. The time interacting with the system is both a

design consideration as well as a function of the delivery platform

and software combination.

6.4.2 Developuent interface. The development interface is another

characteristic that is very important in the selection of a shell.

The knowledge based creation activity may be relatively difficult

or simple depending upon the kind of shell. When you're dealing

with small and simple type shells, generally speaking knowledge

based creation will be done either on a word processor of your

choice or a word processor that comes with a shell. These tend to

be basically rule based systems. However, as you move into more

graphic oriented development such as an object oriented system, the

ability to create graphics in the development environment will

become extremely important.

Most of the large complex shells have the capability for graphics

user interfaces that can be easily designed and implemented by the

developer. This graphic support may be extremely important in

certain diagnostic systems for example, or simulation systems or

training systems that may be implemented. During knowledge based

* development and during system development the developer will often

have to do debugging of the system. The capability for graphic

knowledge based displays and inference tracing inside of the system

will be very important to efficient programming of the system.

- 69 -

The large hybrid systems (see paragraph 6.6) tend to have very good

inference tracing and graphic knowledge base displays. Small

systems particularly those that run on the PC tend to have very

little support in the area of debugging and particularly in graphic

knowledge based displays in inference tracing. Another important

aspect of the development environment is the capability to insert

a WHY and HOW explanations directly by the developer rather than

having the system generate them. Some systems generate WHY

explanations for example, simply by showing the rules on the screen

the system is attempting to satisfy. This rule may not be in a

form and format which are easily interpreted by the user.

Therefore, it is very important the developer have the capability

to put in his own WHY and HOW explanations in a form the user will

be able to understand.

6.4.3 System Interfaces. The next characteristic that's important

are the system interfaces that are available to the developer

inside the shell. If the system is going to be a stand alone

system running only on a PC, then the system integration is not as

much of an issue; but, if the system must integrate with other

existing data bases on a mainframe, then grave consideration must

be given to the system interface capability of the shell. Shells

have various levels of integration capabilities Often,
integration in the shell literature means that you can transfer an

ASCII file into the shell, or you can transfer a data base file
into the shell. Of course that data base must be put into a format

that will be acceptable to the shell. More often than not a

program interfacing the data base to the shell will have to be

written in order to make the interface.

Hooks into other languages are also important. If you have reason

to believe that you will need hooks into other languages, then you

need to identify whether or not the shell has the hooks you

require. Additionally, you must look into the operating system

- 70 -

compatibility of the shell to make sure that it runs in your

operating system.

6.5 Define Platform Requirements.
You must also consider the hardware and software requirements both
for the development environment and for the delivery environment.
The development or delivery environment may well be an overriding
consideration in selecting a shell for your project. For example,
if you are constrained to a development machine of IBM-PC AT or a
clone, then this hardware limitation will restrict your shell

choices to small PC shells(see paragraph 6.6.)

6.5.1 Development Platform Requirements. The development platform
will often be determined by the software selected. You must define
requirements for your development environment in order to provide
guidance on the types of shells that can be considered. Shells can
be generically classified by the development platform they run on
(see paragraph 6.6.) Some "PC shells", for. example GoldWorks,
require extensive modification to standard PC hardware in order to
be used with the'expert system shell. When considering development

platforms, though, remember that some large shells have the
capability to compile a "runtime" version that can be delivered in
much smaller PC's than are required in the development environment.
A word of caution though, these "runtime" may be relatively
expensive if you have to distribute many copies of the expert
system. The guide here is caveat emptor: buyer beware. Probe your

vendor extensively on this issue.

6.5.2 Delivery Platform Requirements. The delivery of your expert
system must be considered in the early planning stages of your
project. If you're building a system that will be distributed
Widely then it's extremely important that your shell run on your
existing and compatible hardware without significant upgrade. If
the development hardware is significantly different from your

- 71 -

"runtime" environment you must be able to compile your system from
the delivery environment into the "runtime" environment. It is
entirely like that your delivery environment will be the largest

constraint on your selection of a shell.

6.6 Determine Shell Capabilities.

Shell capabilities are founded on their development and delivery

platforms and programming strategies. Platforms can be PC's, Unix
work stations, LISP machine work stations, or the mainframe.

Generally, the larger the platform the more capabilities the shell
will have. LISP platform shell have the most capability but have

the drawback of difficult integration.

6.6.1 Classes of Shells. Today, the largest number of shells are

running in the IBM-PC. The platform can also be a work station
defined as a SUN, MicroVAX or other Unix based computer. The
platform could also be a LISP machine work station such as the
Symbolics or Texas Instruments Explorer. These platforms tend to

be expensive and difficult to integrate into the ordinary MIS
environment. Lastly, a shell might have a mainframe platform.

Most shells allow you to insert HOW and WHY into the system. Not
all allow you to customize these explanations. The customization

of HOW and WHY is a very necessary capability. Look for this
characteristic when you evaluate a shell.

Figure 6-1 provides a classification of some popular shells

segregated by the type of development platform they are capable of

running on. The shells with bold circles are the market leaders

in their class. Some shells, like Level 5 and Nexpert
Object, have versions that run in PC, work station and mainframe

environments. This is a very desirable characteristic if you have

a system that will be running in several environments.

- 72 -

IL
L0-

NCo

C.))

ui Lu i

-3 73e5

6.6.1.1. Small PC based shells typically run on ordinary PC's of

the type usually found in most organizations. Their capability,

generally speakinq, is backward chaining rule based type

techniques in their program. These are the least expensive of the

shells and make an excellent place to start into expert systems.

6.6.1.2. Mid-size shells will run on work stations such as the

Sun, MicroVAX, Masscomp and Apollo. These shells may have both

backward chaining and forward chaining capabilities built into

them. They may on occasion also have object oriented capabilities.

6.6.1.3. The large LISP based hybrid shells typically run only on

special purpose LISP machines such as the Symbolics or Texas

Instruments Explorer. These shells are called "hybrid" because

they have both object oriented capability as well as rule based

programming. These shells usually also have both forward chaining

and b-kvard chaining capabilities.

6.4.2 Shell Capabilities. Table 6-1 shows the problem solving

strategies that you might find in a shell. These strategies will

be discussed below. Figure 6-2 shows the relationship between the

problem solving strategies and problem types above.

6.6.2.1. Abstraction refers to situations which the initial user

inputs are reclassified in more abstract terms reasoned about and

Table 6-1. Problem Solving Strategies

Abstraction

Constraints and Constraint Satisfaction

Conflict Resolution

Truth Maintenance

Hypothetical Reasoning

- 74 -

0E

ts

..

0.

2 x

H U

.0.

-- 5

cc

N

C .o
0 00

CC

(75

reclassified back into more concrete terms. For example, the user
might be asked for specific dial reading, or a gauge value,
or a number to be put in some box on come form. A rule in the

system might interpret those concrete numbers to be signs of a
overheated pipe or an inadequate amount of cash reserve.

6.6.2.2. Constraints and constraint satisfaction refers to

situations in which the user input implies constraints on possible
outputs. Thus, for example, if the user says she wants to purchase
an expert system shell for under $300, the system advisor would
create an appropriate constraint mechanism that would eliminate any
shells that cost more than $300 from further consideration.

6.6.2.3 The next item, conflict resolution, refers to strategies
which handle situations when a system encounters conflicting

constraints. For example, if the user above who is buying an
expert system shell will spend only $300, but at the same time has

requested a feature such as object oriented programming and this
feature is available only on shells that cost more than $800, then
a conflict in these constraints exist which the system must be able

to resolve.

6.6.2.4. The next strategy is truth maintenance. This refers to
the ability of the system to update information in its working
memory as new information arrives. For example, if default

information suggests that all birds can fly and that George is a
bird, we assume that this bird can fly. If we're later told that

the objert-, Geo:rge, is a penguin and we know that penguins are

birds and that they can't fly, then we must be able to update the
trut. maintenance that George cannot fly, even though we know by
default we would have expected him to because he's a bird. Later
on we might be told that the fact that George is a penguin is a

false fact. Under that condition, the system must be able to

revert back to the fact that George can fly again. These

- 76 -

activities are generally and generically called truth maintenance

inside various systems.

6.6.2.5. The next strategy is hypothetical reasoning. This is a
problem solving strategy that allows the system to maintain and

pursue multiple reasoning paths at the same time. Thus if we find

that our user can't make up his mind on some key feature of a truck

that he's designing, we can assume that he has chosen both aspects

of the feature. The system will then develop two different

designs, one on the assumption that he has chosen the feature, and

the other on the assumption that he has not chosen the feature.

Later we will likely get evidence that will rule out one of the two

designs. Otherwise, the system recommends two different designs

and let's the user choose which design to use.

6.6.3 Programing Techniques. In most cases, a conceptual problem

solving strategy can be represented by means of different

programming techniques. Programming techniques are shown in Table
6-2 below. Figure 6-3 shows the relationship between problem types

and programming techniques. These include approaches to the

representation of knowledge such as rules and objects. They also

include backward chaining, forward chaining and certainty factors.

All of the problem solving strategies presented above can be

represented in rule based systems, and they can all be represented

in object oriented systems as well. Generally, though rule based

system shells are easier to develop and therefore tend to bi the

only option in the smaller (PC) shells. Object oriented

programming shells require large amounts of memory to be effective,

therefore, they tend to be found in large platform environments,

especially work station and larger.

6.6.3.1. Rule based programming was the first type of programming

of an expert system. It involves preparing structured statements

of the type:

- 77-

IF

(Conditions)

THEN

(Actions)

The actual syntax of the rule is dependent on the expert system

shell. Rule based programming is usually the only type of

programming technique found in the small PC shells. Rules are IF-

THEN clauses that encapsulate knowledge as a series of antecedents

that cause actions. The IF portion of the rule is called the

antecedent, the THEN portion of the role provides the action to be

take.

Table 6-2. Programming Techniques

Rules
Backward Chaining

Forward Chaining
Certainty Factors

Object Oriented Programming

6.6.3.2. Backward chaining techniques are ways of looking at rule

based systems that allow us to work from a particular conclusion

back toward the reasons for having that conclusion. Very often

diagnostic systems are in this category. The reason being that the

results are observed as a behavior of a machine or possibly dial

or gauge output, or perhaps a set of indicator lights. In other

words, the result is known. The reasons for these results,

however, are unknown. A backward chaining system, therefore,

begins with a known set of circumstances and works backward through

the knowledge base to determine the causes for the results.

6.6.3.3. Forward chaining on the other hand works in exactly the

opposite sense. It reaches a conclusion based upon facts that are

- 78 -

LO E
c 0 0Co x x

o~c c

0 Lii

72-

LL 0

cuc
3EE

aa

Ir I
cc

tm2

-79- C

entered into the system. These facts allow the system to select

rules to be activated. When a rule is activated, its conclusion,or

THEN portion of the rule either provides an action for the user or

another fact to activate other rules. If it is another fact, this

fact will then activate other rules in the system and the process

will be repeated over and over again.

6.6.3.4. Certainty factors are numeric values that allow us to

perform conflict resolution (problem solving strategy.) They're

particularly useful in diagnostic situations. On the other hand,

certainty factors are extremely difficult to interpret for most

users. In this development methodology, we recommend against the
use of certainty factors. When they are used, ensure that as a

developer you understand the way the certainty factors are

calculated and what they truly represent.

Certainty factors range in value from -1 to +1 whereas probability

numbers range from 0 to 1. Thus certainty factors are not

probabilities. Be careful not to use them as prokability.
Certainty factors should really have been named belief factors,

because what they really represent is the belief state or unbelief

state of an expert as he reasons about a problem. That is, for

example, a doctor might believe, based upon the evidence, that you

have cancer. His belief can be high or low. His unbelief also can

be high or low, that is he believes you do not have cancer. If the
physician believes strongly that you have cancer, then you might

say his belief factor is .9. If the physician on the other hand

strongly believes that you do not have cancer as a result of the
test results then you might give it a -.9.

The bottom line on certainty factors is don't use them unless you

have a very sophisticated user who fully understands the

implication of the factors.

- 80 -

6.6.3.5. The last item in Table 6-2 is objects or frames. Objects

are entities that can be identified in an expert system. Objects

can be placed into a hierarchy that allows general classes of

objects to be defined and more specific items defined below the

general object. Lower level objects are able to inherit

characteristics from higher objects. Specific objects are called

instances. Object hierarchies are very powerful but their drawback

is the system to run them typically is large. These types of

shells are usually found in the LISP machine class, work station,

and mainframes. Object oriented programming is a programming
technique that is used effectively in classification systems and

in hypothetical reasoning areas. Objects are also very important

to the design of a system because they give us the opportunity to

inherit characteristics very easily, from one object to another.

Figure 6-4 provides an example of an object hierarchy. As shown,

mammal is the general class, dog is a sub-class or specific group

and Buzzy is an instance of dog. The characteristics of any mammal

do not have to be explicitly defined for Buzzy, since he inherits

them from the class object through the sub-class.

6.6.4 Vendor support and Cost. The last dimension you need to

utilize in selecting a shell is the vendor support. This includes

training support, documentation and the cost of the shell. In the

area of training, is it necessary for you to be specifically

trained on the shell, or can you train yourself? Large hybrid

shells are extremely complex and typically require a training class

for you to become proficient in programming it. The smaller

shells, typically running in a PC, can usually be learned

sufficiently adequately by simply starting to use them, just like

any other PC software. Does the vendor of the software provide

electronic mail, telephone hotline service, and/or consulting time

to assist you when you have problems? You will almost always need

some kind of support.

- 81 -

GeneralClass

Dogs Specific
Group

Buzzy The dog in the
back yard

Figure 6-4 Object Hierarchy

Additionally, you should look at the documentation of the shell.

Some shells have excellent characteristics but the documentation

for the shell is not very good. This makes it difficult to learn

hard to use the shell and when you run into problems it's difficult

to find references on how to use the shell. Most shells Vi. I be

changing over time so it's also important to learn what the

maintenance and upgrade procedures are for this particular shell.

In particular, it's important for the larger shells, which are much

more expensive than the PC shells, that you know what the

maintenance will be on those shells over time.

The last item, of course, is the cost of the shell. Shells range

in price at the very low end from about $100 or $150 all the way

up to $60,000 or $70,000. Obviously what you get at a $50,000 or

$60,000 shell is considerably different from what you get for a

- 82 -

$100 shell. However, it's also true that some relatively

inexpensive shells can be highly productive, therefore, one should

not buy on cost alone. It is, however, a consideration in the

overall cost of the project.

6.7 Matching Requirements and Capabilities.

You will notice that in this selection chapter we have not provided

a particular set of shells for you to choose from. The reason for

that is quite clear. There are a large number of shells in the

marketplace and it's extremely difficult to keep up with all of the
attributes of each one of those shells. What we have tried to do

instead is to give you some underlying principles to utilize in

selecting a shell, and in particular to give you some items to look
for as you make those shell selections.

We also provided some of the definitions of the vocabulary that's

utilized in the shells to help you make a better decision about

the kind of shell that you might need in your project. To assist

you further Table 6-' has been provided as a form that you might

fill in for any shell that you might be interested in evaluating.

This form will give you enough information that you can make

decisions about the relative merit of the shells based upon the

decision criteria given in this chapter.

- 83 -

Product

Vendor Name, address

Hjhare Compatibility

Language Used

External Interfaces
Sensors
Databases
Other computer systems

Knowledge Representation

Control Structure
Forward Chaining
Backward Chaining

Uncertainty Factors

Truth Maintenance

Knowledge Acquisition Facility
Editing & debugging tools
Deduces rules from examples
Other

Explanation Facility
Customizable?

User Interface
Graphics
Menus

Separate run-time modules

Price

Table 6-3 Comparison Form

- 84 -

Chapter 7

Knowledge Acquisition

7.1 Introduction
Knowledge acquisition is the process and the essence of building
the expert system. Successful expert systems are built by studying
the strategies that human experts use to solve problems and then
using those strategies and software to em4ulate their behavior.
Before this system can be built, however, the knowledge acquisition
must be completed. It is the most time consuming and difficult
aspect of the development of an expert system project. Although
recent reports show us that there are some reasons for optimism
that some of the obstacles are being overcome in knowledge
acquisition, the knowledge acquisition process still remains a
bottleneck in the design of most expert systems.

Before we discuss knowledge acquisition more fully, it's important
that we understand a couple of definitions. We make a technical
distinction between knowledge engineering and knowledge acquisition
in the following way.

* Knowledge engineering is the process of understanding

the structure of the problem. Understanding how
knowledge is accumulated and collected in the particular
application to be emulated, and understanding how the
user interface should be constructed for ease of use of

the system. It involves, to some extent also, some
knowledge modeling process because this tells us what
the knowledge base structure should look like.

* Knowledge acquiuition is the collection of the detail of

the knowledge based and the formulation into the
structure's design in the knowledge engineering activity.

- 85 -

Knowledge engineering, or the process of determining the structure

of the knowledge base is often completely determined by the

selection of the tool. This means that if you select a tool that

does only rule based reasoning, then the structure of your

knowledge will be in if/then rules. There is no other choice.

This is often the case when using small tools. Using large hybrid

tools, however, you often have options to utilize either objects,

rules, or frames in the construction of your expert system. Which

of these that you use at various points in the system will be

determined by your knowledge engineering and knowledge acquisition

process.

There are a number of a!i'ernative methods of knowledge acquisition

available. These are documentation review, interviewing of

experts, expert protocols and expert system simulation techniques.

It appears unlikely that most development projects will be carried

out without at least some use of documentation reviews and

interviews between a knowledge engineer and the domain expert. An

understanding of the range, variety and appropriateness of

knowledge acquisition methods is important to each knowledge

engineer. The purpose of this chapter is to focus on the four

methods and to give a description of these techniques for use by

knowledge engineers.

7.2 Documentation Review.

Most expert system candidates are operational with a manual process

in place. In some cases, the manual may be supported by some

automation. These operations generally have documentation which

explains how the process is to be conducted, at least in its

rudimentary forms. It makes sense to utilize this written

knowledge as a basis for starting an expert system project. Obtain

and review any documentation, including training class materials

about the system.

-. 6 -

7.3 Methods of Interviewing Experts.
Interviewing is the most common form of knowledge acquisition. It

is the form usually called to mind when knowledge acquisition is

mentioned. Every knowledge engineer must be a skilled inteviewer.

Some of the other techniques will also be supplemented by

interviews. This makes interviewing the most important skill

needed by a knowledge engineer. The following paragraphs describe

several interview techniques.

7.3.1 Nondirective Interviewing. The method of nondirective

interviewing was developed for use in client centered counseling

and psychoanalysis, but it has found wide spread application for

gaining in depth understanding of an individual's thinking process.

The verbal behaviors that constitute nondirective interviewing are

designed to encourage self explication by the expert and verbal

statements on the part of the expert with a minimum of intrusion

by the interviewer. When used effectively, nondirective responses

guide and channel the interaction in a relevant and informative

direction without imposing any frame of reference or biases of the

knowledge engineer on the expert.

Nondirective interviewing is a very unstructured process and the

knowledge engineer must learn certain tools in order to encourage

the expert to reveal the process that he goes through in his

decision making. These tools are in the form of responses that

the knowledge engineer uses to the domain expert. The following

paragraphs describe the responses that a knowledge engineer might

utilize in a nondirective interview.

7.3.1.1 Continuing Statements and Behavior. The most nondirective

interviewer behaviors are those which merely indicate an

expectation encouragement for the domain expert to continue

talking. Such statements such as, please go on, or non verbal

- 87 -

responses such as head nods sometimes silence can also be used to
encourage continued description or to live the domain expert time
to retrieve memories or to transform Officult mental operations

into speech. i4

7.3.1.2 Reflection. Reflections are restatements or paraphrases
of what the domain expert has communicated to the knowledge

engineer. Use of this type of response conveys to the expert the
knowledge engineer's ability to listen and understand the problem
domain. Reflections are repeated information back to the domain
expert, also allow an implicit accuracy check. The expert is given

an opportunity to review the knowledge engineer's understanding if
it is not an adequate representation of what has been said.
Frequent use of reflections creates a balanced interaction in which
both parties are actively engaged in exploring the problem domain
and insures effective listening on the part of the knowledge

engineer.

7.3.1.3 Summarizing Statements. Summarizing statements are

similar to reflections in that feed back to the expert the essence

of the information that has been presented. These statements
generally span greater amounts of information for longer periods
of time than the expert was utilizing. However, providing a recap
of the points of importance in a major segment of a interview.
Summarizing statements will often help to determine whether a
sufficient amount of information has been gathered for a change of
topic to be appropriate. If the expert indicates that the summary
has omitted critical issues, then further exploration of the

current topic is indicated.

7.3.1.4 Open Ended Questions. Open ended questions may promote
the continued flow of talk of the expert or discourage it depending
upon the way they are worded. Closed ended questions can halt the
flow of description from the expert by creating a specific answer

- 88 -

of one or a few words. Questions that can be answered by yes or

no are common examples since they allow the expert to reply with

one word answers and do not encourage elaboration. Open ended

questions, on the other hand, indicate a general direction for the

expert to explore without shutting off the flow of description.

They guide the interview while still allowing the expert to decide

what content is most important. Open ended questions often take

the form of tell me more about some topic, or in what other ways

to you use information about some topic.

7.3.1.5 Interpretations. Interpretations are attempts to discover

connections between ideas that have escaped verbalization or

recognition by the expert. Often the knowledge engineer having

learned about an area of the domain expert's thinking will

recognize apparent aspects of the problem solving strategy which

forget to be mentioned. Interpretative statements present these

hypotheses to the expert for verification. These statements are

not purely nondirective since they represent an attempt on the part

of the knowledge engineer to uncover associations or knowledge not

revealed by the expert. They are usually introduced tentatively

to avoid second guessing the expert, and are considered subject to

revision if they are not accepted. Nondirective interviews can be

almost informal conversational interviews. They depend on the

spontaneous generation of questions including ongoing observation
of the expert's activities. There are no predetermined questions

and the expert may not even realize the amount of data which are

being gathered in the interview. In fact, if you talk with

different experts different data would generally be gathered from

these interviews. The major strengths of the nondirective
interview is that the knowledge engineer can be highly responsive

to the expert and the interview can be individualized making use
of the surroundings or particular phases. The major weaknesses of

the nondirective interview is that it takes a great deal of time

to perform the interview. The quality of the data collected are

- 89 -

highly dependent upon the interviewing skill of the knowledge

engineer. The nondirective interview'Is most often used in the

early discovery process of knowledge j!quisition. usually before

much is known about the process go be prototyped in the

application.
1

7.3.1.5.1. While nondirective interviewing may appear to be a

relatively simple process, effective use of the method involves

close attention, ongoing analysis of the content of the expert's

replies and carefully worded responses. This skill is usually

developed with time and experience. Without training few

individuals are naturally nondirective and few are aware of how

profound the effects of their verbal statements can be on the

replies they receive. Performing nondirective interviewing

generally requires the keeping of careful notes during the

interview that will assist you as the knowledge engineer in

formulating questions as the interview progresses.

7.3.1.5.2. Analysis of the data collected from the nondirective

interview involves the reduction of free form verbalization from

the expert into a more structured format. The techniques used for

this if often called knowledge modeling. A knowledge modeling
process will be discussed later in this chapter.

7.3.2 Structured Interviewing. In contrast to nondirective

methods, the structured interview has a well defined predetermined

agenda which guides the conduct of the interaction. Its purpose

is to illicit specific data required by the expert engineer.

Preparations for the interview begin with definition of the

information to be obtained from the expert and formulation of a

sequence of questions designed to provide the desired answers. A

written interview guide is almost always used by the interviewer

to assist in administration and data collection. Questions

contained in this interview guide place specific non-ambiguous

- 90 -

expectations ont he knowledge engineer and serve to control the

course of the interview.

7.3.2.1. Structured interviews may be of two basic types. The

interview guide approach and a standardized open ended interview.

In the interview guide approach the knowledge engineer employs a

list of topics to be explored along with subtopics to be probed.

The issues on the guide are not necessarily taken in any order,

nor is the knowledge engineer restricted to the wording of the

question topics. The knowledge engineer must use his own skills to

probe the long term memory of the domain expert and clarify the

issues.

7.3.2.2. The strength of the interview guide is that it forms a

checklist to insure all relevant topics are covered in each

interview. This serves to limit to the time for the interview, as

well as make the interviewing process more systematic. The

weakness of the interview guide is that it destroys the spontaneity

of the interview process so that a small danger exists that some

relevant information might be missed. An interview guide is used

in order to make sure that basically the same information is

obtained from several experts when several knowledge engineers are

used. This makes the interview guide very appropriate for the

knowledge acquisition process.

7.3.2.3. A structured interview .uld use a standardized open

ended interview guide with a set of carefully worded questions that

are asked of each expert. This approach minimizes the knowledge

engineer's effect, as it can be used with less experienced

knowledge engineers. Very systematic data are obtained which makes

it especially useful when there are a large number of experts to

be interviewed. The weakness of this method is the knowledge

engineer is constrained from probing into unanticipated topics and

the thrust of an individual expert's differences are reduced.

- 91 -

7.3.2.4. A fundamental skill when using structured interviews is
the design of questions that will effectively illicit the desired

Ata. one congern is matching the language of the questions to the
Waracteri" of the domain expert. Vocabulary and syntax must
be chosen to maximize the accurate definition of the desired
information. The goal is not necessarily simplification of
language since many expert professionals will not respond
appropriately to questions which are oversimplified or in "lay"
language. Instead the knowledge engineer must match the wording
of the questions to the communications style of the expert with
sensitivity to specialize vocabularies that may be appropriate to
the situation. This is the reason why knowledge engineer must have
some experience in the domain of expertise for which they are
building systems.

A second concern in generating questions involves the frames of
reference of the expert and the knowledge engineer. Domain experts
who are unfamiliar with the format and structure of expert systems
software may find it difficult to respond adequately to questions
which are implicitly or explicitly assuming a particular style of
knowledge representation. While the frequent warning is given to
knowledge engineer to avoid early assumptions about a particular
scheme of *wledge representation, in practice it is often
difficult to aormulate questions which are totally free of such
biases. Even assumptions about the generic type of the problem
being solves may result in questions which the esperts find
inconsistent with their own thinking process.

A third issue involves the type of questions included. Each
question in a structured interview should be a query about a single
idea. The seemingly simple dictate is a frequently violated one.
Knowledge engineers frequently fall prey to asking questions which
in fact are several questions simultaneously which are difficult

- 94 -

for experts to interpret. In spite of its overtly directed nature,

the structured interview does not necessarily have to depend upon

closed end questions. In fact, it is best to avoid yes/no

questions in favor of "open ended questions which encourage

description and discussion by th3 expert.

A final concern is the sequencing of questions. The interview

guide should take a sensible approach to presenting questions in

a sequence which is appropriate to the decision being discussed.

Organization which reflects the underlying series of processing

steps will improve the chances of flow and accurate report from

the domain expert.

7.3.2.5 Once the interview guide is constructed administration is
a process of presenting the predetermined questions or topics and

following up replies from the expert with probes by the knowledge
engineer which elicit further detail. In many cases these probes
can take the form or open ended questions or specific closed end

queries. The success of the method depends on the ability of the
knowledge engineer to identify areas of missing information to
generate probes which fill gaps in the data and to know when a

question has been answered sufficiently.

Because of its dependence on prior familiarity with the topic

material, the structured interview is typically used later in the

process of knowledge engineering. The planning and analysis that

go into creating such an interview may be inappropriate after the

knowledge has a sound working knowledge of the expert and the

domain area. Careful formulation and administration of a
apredetermine set of questions can make the knowledge engineering

process such more efficient and minimize the burden it places ont

he expert. This approach may also be appropriate for gathering

information from additional experts who are not the central focus
of the thought process.

- 93 -

Knowledge acquisition is a multiple step process that elicits
knowledge a domain expert. These five stages are

identificat " conceptualization, formalization, implementation
and testing. Identification describes the problem, resources and
goals. Conceptualization represents knowledge by determining key

concepts and relations. Formulation involves designing the
structure to organize knowledge by mapping the concepts and

relations. Implementation formulates structures to embody the
knowledge using rules, frames and other coding approaches. The
final stage, testing, validates the knowledge structures and
provides the input into the prototyping evaluation process.

The implementation of capturing this knowledge is the process of
knowledge acquisition. The representation of this knowledge so
that it can be understood by everyone on the team is the process
of knowledge modeling. The techniques of knowledge acquisition
will be discussed first, and then at the end of the chapter we will

discuss knowledge modeling as a process.

7.4 Expert Protocols.

Expert protocols are techniques where the domain expert perform the
task under study for the expert system and report on his thinking
processes as he conducts the activity. The most common form of

this activity is the thinking aloud narrative.

7.4.1 Thinking Aloud Narratives. A simple approach to discovering
the strategies used by domain experts in making decisions is to ask

them to label and to describe mental operations and internal
thought processes that occur while they are actually engaged in
solving a problem. Thinking aloud produces an ongoing narrative

related to the completion of the chain of mental operations which
make up decision making.

- 94 -

7.4.1.1. Thinking aloud narratives can produce a rich source of

data for the knowledge engineer. There are actually three

variations of the method. The most common is concurrent thinking

aloud in which a narrative is produced during the actual

performance of the problem solving task. Retrospective thinking

aloud narratives which involve a report of memories of prior
occasions of problem solving are also fairly common. Less
frequently used is hypothetical thinking aloud which presents an
imaginary situation to be solved. Both concurrent and hypothetical
thinking aloud methods are actually reports on immediate problem

solving processes. In the case of the hypothetical approach, the
external circumstances and data are not physically present but
decision processes are activated to deal with conceivable

circumstances.

7.4.1.2 While most individuals are familiar with explaining how
they reach conclusions, typical descriptions of this type are

incomplete. Thinking aloud narratives require the expert to
maintain close attention to the sequence of operations and their
immediate products in his conscious mind. Many individuals utilize
some form of internal speech in portions of their problem solving,
and thinking aloud procedures externalize these silent language

processes by producing verbal descriptions.

7.4.1.3. Thinking aloud requires recognition and verbal
classification of these types of internal mental events. The
knowledge engineer must pay attention to gathering a complete
report of the expert's activity at each step of the decision making
process: (1) the sources of external information relavant to each
decision, (2) sources of internal knowledge called upon, and (3)
methods of combining the knowledge. The expert will usually

require some practice in thinking aloud in order to produce a
sufficiently detailed thinking aloud narrative.

- 95 -

7.4.1.4. As the narrative is produced by the domain expert the

knowledge engineer list s to the steps being described paying

particular attention to $vious omissions. The knowledge engineer

can then engage in cuing of the expert. Cuing is the process of

prompting the expert for additional information when such omissions

are recognized. Effective cuing will ensure sufficient description
is obtained without interfering markedly with the expert's internal

processes under investigation.

7.4.2 Expert Systems Simulation. The next knowledge acquisition

approach is expert system simulation. It takes into account the

fact that knowledge acquisition is often a very difficult process

because the domain expert himself may not have the ability to

articulate his procedures. His knowledge is compiled such that he

does not understand himself how he performs this task. The first

steps towards understanding how the expert performs his task can

often be assisted greatly by simulating the expert system in a live

experiment. The expert system simulation is conducted in a way

that the domain expert plays a role of the computer expert system

and a novice user is brought in to perform various case protocols.

The objective of the simulation technique is to externalize and

decompose the mental process of the domain expert in performing his

analytical task.

7.4.2.1. The set up for the experiment includes a room with video

taping facilities. The expert and the novice user are separated

so that they cannot see each other such that the expert and the

novice can communicate only through verbal communications. The

entire process of simulation is video taped for later analysis by

the knowledge engineer.

7.4.2.2. The novice has all the case documents. The expert's

access to case information must be through verbal communication

with the novice. This verbal communication is restricted to

- 96 -

multiple choice questions and answers, help request from the

apprentice and directives from the expert on how to find

information and perform specific calculations. As a result, the

expert is forced to accurately and completely externalize the

individual analysis steps and components as well as the information

algorithms and rules used and assessments generated for each step

associated with the particular case. In most cases several case

protocols will normally be used in the simulation in order to cover

as many diverse situations as possible.

7.4.2.3. Following completion of the simulation, the video tape

is analyzed by the knowledge engineer. The knowledge engineers

utilize the video tape to structure knowledge and to determine the

thought processes that are being generated by the domain expert.

This knowledge acquisition technique is often used early in the

development process in order to gain insight into the structure

and uses of domain expertise by the expert.

-97 -

Chapter 8

Knowledge Modelling

8.21 Introduction

Knowledge modelling is the analysis process of transforming

information given by the domain expert into diagrams that describe

the domain knowledge with a top down perspective. The intent of

knowledge modelling first, is to support the structured acquisition

of knowledge and second, to provide a high level, visual graphic
form to augment the detailed representation schemes such as rules

and frames. It supports acquisition and representation of problem

solving knowledge by:

o Describing different types of knowledge in a systematic

fashion.

o Applying a methodical approach to knowledge acquisition.

o Adaptability to various knowledge representation

techniques such as rules and frames.

o The use of graphic techniques to augment the scope,

understanding and modularity of knowledge.

8.2 Knowledge Modelling.

Figure 8-1 represents the conventions used in developing knowledge

models. The primary components of a knowledge model are events,

occurrence linkages and objects. Events are descriptions of

knowledge consisting of facts about actions and events that will

take place, are taking place, or have taken place. Thus events

have action verbs associated with th~m. For example, an event like

"verify test indicator status" might be an event from the knowledge

for equipment testing. Events are represented by boxes with a

number and name to identify the event. The numbers are assigned
as decimal numbers to allow for hierarchical decomposition.

- 98 -

Linkage 1 .=

1. EventA La 2. Event B

events

occurrence linkages 3 -X

objects

Figure 8-1 Conventions In Knowledge Modeling

Events are connected to other events by occurrence linkages, shown
by directed arrows, that separate events into unique instances
within periods of time. They are used to corralate the occurrence
of one or more events in relation to other events. The separation
of events allows them to be viewed as independent components while
still realizing the overall connectivity of a system of knowledge.

Events have two characteristics that are essential for knowledge
representation. First they indicate activity based upon cause and
effect relationships of other events or objects. Second, events
may be decomposed into subordinate events.

Occurrence linkages are directed arrows which show the direction
of the knowledge flow. Occurrence may have a name associated with
them by writing that name along the arrow. Occurrence linkages
can go into as well as out of both events and objects.

- 99 -

Objects are shown with their name in a circle. Objects are

situation status entities and thus are usually nouns or noun

phrases. Objects are used to identify persons, places or things

and provide descriptions, characterizations or classifications.

An object consists of an identifier to name the object, and an

associated attribute such as color, type or condition. An object

for the diagnostic example might be "indicator light reading is

fail." The state of an object is determined by events in the

diagram.

The top level view of a knowledge model is often called the domain

view. This is the set of events, occurrence linkages and objects

represented at the top level diagram. Events on upper levels are

decomposed hierarchically into subordinate sets of events that can

also be decomposed as required until a desired level of

representation can be reached. An event at the lowest level of

the diagram is called a primitive event. A primitive event is

determined when it is no longer practical or productive to

decompose an event further.

The levels of a knowledge model are identified by a number assigned

from the top down. Figure 8-2 shows the levels typically used in

knowledge modelling. Level 1, shown in 8-2A, is also called the

domain view for a knowledge model. The box around the Level 1

diagram shows the extent of the domain. The need for the boundary

is to show where outside events influence the domain. For example,

ambient temperature and humidity conditions may influence

diagnostics, but are not part of the system. The linkage

connecting into the domain from outside is an interface linkage.

The Level 1 diagram is decomposed into a level 2 diagram by

breaking the level 1 events into their components. Figure 8-2B

shows a Level 2 diagram by decomposing one of the events from

Level 1. Level 2 diagrams are then decomposed into Level 3

- 100 -

A. Level 1 Domain Boundary

1.0 Leev2 enpto of2. Event usd

3.1e~t
-- Event

usd

3.3. Event E

B. Level 3: Decomposition of Event E

By definition,
primitive events are
at the lowest level

Objectof diagram.

Figure 8-2 Knowledge Model Levels

diagrams. For example, Figure 8-2C shows a level 3 diagram for

one event in the Level 2 diagram. You should avoid going below

Level 3 in your knowledge models. Lower levels typically add

complexity beyond the understanding of most individuals. If you

find going to lower levels is necessary, try to redefine the domain

into several domains that interconnect at the top level. This will

usually simplify the domain to only three levels. Figure 8-3 is

an example of a knowledge model from the MOBPLEX development.

The graphic model of a knowledge model is not complete without some

description of the manner in which the knowledge is manipulated.

These descriptions are written at the lowest level of the diagram

for the primitive events, objects and linkages. The descriptions

are written in a form of structured English using action verbs,

qualifiers, quantifiers and sequencing words. Formally, this is

called a Knowledge Representation Language (KRL). Several KRL's

exist and have been defined.

If you know a KRL, then use it. If you do not know one, it is

relatively easy to create a simple one of your own for your use on

the project. For each of the bottom level events, objects and

linkages write a definition of terms and a description of the

activities. Do this utilizing a structured English language with

short unambiguous statements about the events. These statements

should be very specific and limited to the task being described.

You should use short structured sentences, leaving out pronouns

and modifiers of the English language and sticking to action verbs

and the names of the entities that are being described. An entry

for a diagnostic problem might look like this:

Rule 3.2.1. IF indicator light status is fail

THEN check input voltage on pin 42

ELSE verify start switch is on.

- 102 -

Level 1.

1.0 Event A

CObject 2.0 PTSR
DB y Query

Level 2.

1.1 Select Army

1.2 Select MOBSTA I

1.3 Select Unit Type

1.4 Select Unit

1.5 Select PTSR Formi

Figure 8-3 Example from MOBPLEX Knowledge Model
- 103 -

The language you create will be essentially comparative verbs,

events from the knowledge model, and qualifiers and quantifiers

for the objects. Those three classes of words should be used in

your KRL. The sequencing of entities is provided by the sequencing

words. The sequencing words are: if, and, then, while, else,

otherwise, and until. These sequencing words provide the set of

operations and conditions under which particular events can take

place.

You should also recognize that in some processes there will be a

need for algorithmic or mathematical equations. Equations are very

concise and a precise way of stating certain general principles.

They are absolutel. necessary, of course, when you are working with

numerical data and one must perform calculations. Just because you

are building an expert system does not mean that you have to shun

the use of algorithmic computations. In many cases, these

algorithmic computations are a part of the decision process. When

the process calls for it, you should utilize algorithms and

equations in precisely the same way that you would in any

traditional program.

Some hints for building the knowledge model are to first of all

assume that the knowledge model will have to be redone. You will

typically not create a correct model on the first attempt. The

following points will assist you while you're creating the model.

* Name knowledge flows first.

* Minimize the linkages (regroup when necessary).

* Make notations of questions and assumptions that you make

as the model is being built.
Do it over again.

One last point of the knowledge model that is extremely important;

the knowledge model is not a flow chart, and while it does in some

- 104 -

ways look a bit like a flow chart, this is not a flow chart for a

computer program. Rather, it is a description of how knowledge

flows inside the organization. Often knowledge follows the flow

of data around the organization. Therefore looking at data flows

is helpful in creating the knowledge flows. But it must be

imperative that you do not get this confused with a flow chart.

The knowledge model does not show program controls. That's a very

important point. What we're concentrating on here is the

information flow, the knowledge flow and the processes. You are

describing the decision making environment. The last point is to

remember that only the primitive events, or the lowest level

events, are the ones that are described in the KRL.

8.3 The Modelling Cycle.

The same knowledge modelling techniques can be used to produce

different views of the same decision environment. Figure 8-4

illustrates the kind of modelling cycle that we might go through.

We begin with a current physical model in the lower left hand

corner of the figure. Through a process of discovery where we

interview experts or observe their behavior. We move from the

current physical model and create a logical model to describe the

process.

Through a process of design, we move from a current logical model

to a proposed logical model. From the proposed logical model we

go through a process of implementation: the process of developing,

designing and building the system. Building prototypes, cycling

back through prototypes, creating the software, will move us from

the proposed logical model to the proposed physical model. When

we move from the proposed physical model to the current physical

model back to the place where we began again, we transition this

system into the user environment. That occurs utilizing user

testing, integration with the existing hardware and software,

validation, verification, user training, and maintenance.

-105-

Current Design Proposed
Logical Logical
Model Model

Discovery Implement

Current Proposed
Physical -o Physical
Model Transition Model

Figure 8-4 Modelling Cycle

- 106 -

Chapter 9

Design and Prototyping

9.1 Introduotion.
At the conclusion of knowledge modelling, the development team will

have defined the functional breakdown of the expert system, it will

have defined its problem solving behavior and all of its interfaces
that are required to support the system. These interfaces will
include user inputs as well data base interfaces or interfaces with
other systems that are necessary to support the expert system

itself.

9.2 xpaert System Design.

In the expert system design phase, we will be primarily looking at
the user interface design based upon the shell that we have chosen
to use. The phases in this user interface design is to look at

the user perceived objects, the display layout, the interaction

sequences and output behavior. At this point we have broken the
problem solving function down into tasks small enough so that we
will be looking at individual user acts and the expert system

responses. At this stage of the process we are specifying
interactions that will be at the level of detail of the actual

instruction for the user to operate the system.

9.2.1 User Perceived Objects. The system should use objects in its
operation that the system user recognizes. These user objects

should be in the context and vocabulary of the using environment.

Both the designer and the user must share the perceptions of each

of the mentioned objects in the user interface and there may also

be unmentioned objects in the context that they must also

understand.

- 107 -

User perceived objects are of several kinds. First, there are data

objects that represent real world entities such as vehicle type or
amount of classified material. There are data objects that

represent attributes of the entity such as UIC, type, or amount.

There are display objects of many kinds. Some of these display

entities, for example might be a menu or a graphic picture of a

movement or an item inside the unit. It might be a table, it might

be a graph. As these examples show a display object can represent
an entity in different ways. It might have an appearance that

reminds the user of the actual entity, it might display the value

or the key attribute of the entity or display the values of several

of the entity's attributes, it might also compare entity attributes

to other entity attribute values.

In addition to display objects that represent entities and

attributes of the problem model there are objects conceived by the

designer to manage user interaction. For example, the user will

be aware of the main window of the screen. The system will also

have pop up windows that exist when requested by input from the
user. These windows and menus that pop onto the screen are

designer defined objects. They are manipulated by the user during

the operation of the system. All of these objects and the way in

which they are used must be designed by the developer of the

system.

The knowledge model will help in designing names and descriptions
of all the objects involved in the set of tasks for the domain.

This set of tasks will comprise the problem solving functions as
defined in the knowledge model. The process of relating the

problem solving functions to the actual screens, objects, menus,

graphics that the user will see is the process of designing the

user interface.

- 108 -

As you design the user interface, you should keep the following
underlying principles in mind.

Interface should be transparent - the user should be able

to focus attention primarily on the problem objects
rather than on the display that represent them.

The interface should be a user documented in the user
manual in terms of the user perceived objects the
designer creates, because the user is in fact going to
work with these objects in the system not the real thing.

* The interface must be system documented in terms of the

created objects without any reference to the real world.
When the functional design is translated into the
program, nothing can be left to the computer's
imagination, experience or judgement.

9.2.2 Design Display Layouts. The next step after creating user
perceived objects is to create display layouts. This design
process includes the definition of the architecture of the screens
and the layout of each screen. These layouts are the places to
put the objects. The user can recognize them and interact with
them.
At the highest level are the objects called screens. They are laid
out in a structure called the screen architecture. A screen is
everything the user sees on one monitor at one time, plus those
things that might be popped up in windows or scrolled to. The
screen architecture should follow naturally from the functional

- architecture. Each screen should support one high level function
or separable part of one high level function, or a collection of
related high level functions. Figure 9-1 illustrates a screen
architecture of MOBPLEX by showing the screen sequences for a
typical session of querying the data base.

- 109 -

* Screens Querys Reports Updating Utilities

***** Postmobilization Training and Support Requirement ****

1st Army
2nd Army
4th Army
5th Army
6th Army

*rrent Location **Doors-*
IPTSR Cabinet Mobilization

Planning
Expert System

* Screens Querys Reports Updating Utilities

*~**** Second Amy ******

Camp Blanding Camp Shelby
Ft. Benning Ft. Bliss
Ft. Bragg Ft. Buchanan
Ft. Campbell Ft. Chaffee
Ft. Dix Ft. Bustlis
Ft. Gordon Ft. Kill
Ft. Jackson Ft. Knox
Ft. Lee Ft. Leonard
Ft. McClellon Ft. Polk
Ft. Pickett Ft. Redstote
Ft. Riley Ft. Rucker
Ft. Stewart Ft. Story

SCurrent Location **Doors
[2nd-Army Drover Mobilization TM

IPlannini
EXpert system

Figure 9-1. MOBPLEX Screen Architecture (page 1 of 3)

- 110 -

* Screens Query* Reports Updating Utilities

*.**.* Ft. Stewart Mobilization Station ******
Artillery Units
Aviation Units
Cavalry Units
Medical & Hospital Units
Engineering units
Infantry Units
Maintenance Units
Military Police/Intelligence Units
Ordnance Units
Quartermaster Units
Signal Units
Supply Units
Transportation Units
Other Units

* Current Location * * Doors *
Ft. Stewart Pile Mobilization 2nd Army

Planning PTSR
Expert System

* Screens Querys R

I Fort Stewart Infantry Units.

1/122D INF (TLAT)
HHC 485H INF BDE(M)
NQ 2/121ST INF (M)
IST BN 121ST INF (4)
4TH BN 118TH INF (MECH)
IST BN 118TH INF (mECH)

nce Units

Quartermaster Units
Signal Units
Supply Units
Transportation Units
Other Units

CUrrent Loation* Doors *

Ft. Stewart File fMobilization 2nd Army
Planning PTSR

Expert System

Figure 9-1. HOBPLEX Screen Architecture (page 2 of 3)

-111-

* Screens

Select a Form for Unit IST BE 121ST IN? (M)

General Information Training
Intelligence and Security Logistics
Personnel and Administration Medical
Automatic Data Processing Legal
Communications Electronics Dental
Remarks

* Scr

(] Unit Identification Code
(X) Unit Name
(] Section
(I As of Date
(X] HTOE/TDA Number
[I E-Date
C I DODAC
(X] Home Station St.
(X) Home Station City
[XI Home Station Zip Code
I Hailing Address St.
I Mailing Address City
I Mailing Address Zip Code
I Mob Station

(X] Supporting Installation
[I Mob Site
(XI Capstone

Figure 9-1. MOBPLEX Screen Architecture (page 3 of 3)

- 112 -

Design the screen architectures instead of simply letting it grow.

The screen architecture is a good one if it is easy for the user

to remember where he or she is at all times, and easy for the user

to remember where to go at all times. Avcid the proliferation of

adjunct screens. It confuses the user who must work with the

screen that is under a screen that is under a screen.

9.2.2.1 Screen Architecture. In the screen architecture design,
allow the user to go freely from any screen to any other screen

that is immediately superior to it, immediately
inferior to it or parallel to it. Do not force the user to do

things in an arbitrary way.

In collecting data for use in the expert system, no one kind of

data should be required to be collected before any other kind, even

if the second data are dependent on the first. For example, in a

scheduling expert system you cannot declare precedents in

activities until the activities themselves have been declared.

However, the expert system can allow the precedence declarations

and then either provide an error message that activity declarations

must eventually be done, or supply default declarations if the user

selects that option. The basic principle is not to force a

sequence of operations directly on the user because it is not

necessary to do so. Traditional programs generally force a

specific sequence on the operation of the system. Expert systems

should have a sequence determined by the case data entering the
system. Sequence restrictions benefit only the programmer and not

the user.

Do not try to use screen architecture restrictions to make errors
and inconsistencies impossible. Instead, design the system to

. react gracefully to errors and inconsistencies. A good expert
system can recover from any inappropriate data, so it is not
necessary to channel the user narrowly. In fact, one of the uses

- 113 -

of expert systems is sometimes the entry of inconsistent data in

the process of performing what-if modeling.

9.2.2.2 Screen Display Layout. After screen architecture is

designed, the next task in creating display layouts is to design

the layout of each screen. This is where the prototyping tools of
expert systems are extremely valuable, because they allow us to

create screens interactively that are operable as an actual system

rather than as dummy screens. As you create these screen layouts,
you can create the location of windows on the screen and objects

within the windows.

If the screen architecture calls for too much to be crowded on a

single screen, you will often find yourself unable to work on that
screen. Do not attempt to put too much information on a single

screen. You will begin to understand you have too much on a screen

when you are forced to account for very small pieces of space on

the screen, or to worry about whether or not an object can be

placed on a screen or it has to be revised in size in order to get

it on the screen. During this prototyping phase of building the
screens, screen crowding will become rather naturally obvious as

objects come on and off the screen.

The prime tradeoff will always be in the screen architecture and

the screen layout, the disadvantages of putting too much on one

screen against the disadvantage of using several screens. The

ideal for any high level function or closely related group of

functions is one huge screen displaying everything at a glance.

Unfortunately current hardware/software limitations do not allow
this. Generally you start with the notion of supporting a function

with one screen and then you realize that not everything will fit.

The next step is to investigate space conserving strategies.

- 114 -

Crowding, smaller type, less white space, more

abbreviation, tighter layout
* Scrolling

* Pop-up windows and menus

* Zoom and scale change

* Additional screens

Crowding can save only small amounts of space. It makes for a less
effective interface and also has the disadvantage of locking the
designer into an inflexible design with petty limitations on the
characteristics on display objects.
Scrolling can save more space. If scrolling is needed on a window,
it should be provided as a general utility for all windows on the
expert system. Vertical only scrolling is reasonable when objects
occupy horizontal zones all the way across the window. Horizontal
scrolling is reasonable for time scale displays where time runs
along the x-axis and the user is normally interested in the entire
time span, such as in scheduling systems. Scrolling should also
be combined with a facility for altering the display order of
objects, unless there is a natural order that is always
appropriate, such as an alphabetical order. If the user can gather
together the most important objects, the disadvantage of having

other objects off the screen is reduced.

Pop-up windows gives the user direct control of temporary display
of material of temporary interest. If pop-up windows are needed
anywhere in the expert system, it should be provided as a general

utility for all windows in the system.

Zoom is useful for space manipulation where the display is two
dimensional and there are meaningful tradeoffs between seeing
detail and seeing surroundings. One dimensional scale change is

also possible, but rarely used.

- 115 -

Additional screens have large amounts of space. The main

disadvantage to the user is that related information that is not

carried over to the new screen is far away in the sense that

there's significant user effort to go back and look up a forgotten

data point from the previous screen. There's also danger of

disorientation. For the designer, additional screens must be named

and documented separately and they contribute to complexity.

9.2.2.3 Types of Screens and Windows. Screen layout should follow

a generic pattern. Typically, a screen has three permanent

windows.
* Main window

* A control or menu window

* A message window

In some designs the control window or main window can be temporary

and might be a pop-up window only. This is rare except in a very

small system. The main window handles the functional interactions

with the user works with specific part of the problem that the

screen handles. The control window handles interactions which the

user is controlling how the expert system operates. The message

window displays information to keep the user oriented and informed.

These are explained in more detail below.

The main window displays what the user is working with. For

example, if the user is adjusting a schedule, the schedule is in

the main window. If the user is solving a location problem a

location map is shown in the main window. If he is editing a

report the report is in the main window. For example, Figure 9-2

shows a main window in the MOBPLEX expert system.

The control window mediates user interactions in which the user is

working with the system rather than with the problem. Screen exit

is a good example of a control command that belongs in a control

window. Figure 9-2 shows the main control window on the upper line

- 116 -

of the main window. If the interactions in the main window are

highly pointer oriented, there should be control commands in the

control window to govern their behavior. For example, in the form

for extracting information about security storage in MOBPLEX, the

user selects options from the form window and then exits that

window as shown in Figure 9-3. With pop-up window techniques,

control windows need not be large. For example, if the user can

go to many different screens from the current screen, a command

menu item could be provided in a pop-up window with a menu. If

the user selects a menu of other screens can also pop-up. An

example of this was shown in 9-1 from the MOBPLEX system which

shows a sequence of selecting the army, the mobilization station

and the subset of units at the mobilization station.

The message window is a place set aside with a permanent display

of such things as the name of the problem, the name of the current

part of the problem, recent history of transactions and such things

as error messages and prompts. In most expert systems, including

MOBPLEX the system is always either ready to accept a certain kind

of user input or it is not ready to accept any input. Thus, some

prompts, such as touch or type or wait should be placed on the

display at a fixed place in the message windows. MOBPLEX message

windows are at the bottom of the screen such as shown in Figure 9-

2, lower left corner, PTSR Cabinet.

9.2.3 Interaction Sequencing. The next element of user interface

design is the specification of interaction sequences. Each

function that the user can perform or can cause the expert system

to perform will have already been broken down into a series of user

input acts and expert system responses to those acts. For each

screen it is now necessary for you to list all the functions that

the screen manages. In the prototyping phase (see paragraph 9.3,)

you move from designing the function management into building the

system to perform the functions.

- 117 - -

*6

*6

41

.1
I. a £

*6*I
S*

.94
4' A.
.94 0 £1 E- Co
.94

0

! ~h

44
-- N44""

"ii vv~~

p4

C0
*64

* iiDI * i~
* in

9

- 118 -

-V48 4 '0 aw

r4 04

-ro

IQ 666 go

- 0
4)00004 of 4)*6*

C~4 44 4) 4C 0

$4 a 40 i g o- 41
** 66 4 04k -- 00 11

0 Coor r 414(
o1 1 oa:

0 4 kIi MM 0 V0 0 0w
a 0 ocvo4 494u 0.)

S.0 (A4) OOZO04ZOZ

*5LI as -

~£'l119

9.2.4 Output Behavior. An expert system does not physically

operate objects and elements. Its final results are a report that

the user has worked with (perhaps proved) and in some oases the

output could be updating transactions to an external data base.

Either the report or the transaction is the only output interface

that most expert systems provide. Normally the report produced

will be a column of numbers, an English language report, or in some

cases graphic output that can be easily understood by other users.

As the information environment becomes more sophisticated, reports

that can only be read and understood by human beings will become

less useful. A decision is useless unless it is implemented.

Implementation will begin to involve entry of decisions into

connected information systems and it makes little sense for the

results of one system to be manually copied by human beings into

another system. Therefore, in the design phase you must make

allowances for integration of the expert system both from the

standpoint of taking input as well as putting output back in to the

main stream data processing environment.

The major question to be asked in taking output from an expert

system is "Who or what is the report for?" If it is for input into

another system there need be no elaborate communication linkage.

The report should simply be designed so that it is readable into

the destination system or into a translator program that can

convert it.

A semi-automated destination alternative is that the result will

be incorporated into another report. For example, MOBPLEX provides

output into the Lotus spreadsheet as a semi-automated destination.

From the spreadsheet the user of the system can design and build

various ad hoc reports that are useful to the user of the system

or the commander who's made an ad hoc request. This also makes the

report completely editable and transferrable to other systems.

- 120 -

Screen dumps should never be used as text output. Only rarely

would the format of a screen presentation be suitable for hard

copy, since screen displays utilize severe space saving techniques.

Paper output will normally give much more detail than a screen.

For example, the MOBPLEX system is designed to give day by day

reports on logistical materials such as fuel and ammunition as well

as personnel as shown in Figure 9-4. Making a day by day report

of this type would be extremely difficult on the screen, but is

relatively straight forward as a paper output report.

MOBPLEX includes both standardized report outputs as well as Ad

=o reports. These reports were designed on top of the Lotus 1-2-
3 interface. Lotus was used because it was decided there was no

need to build a powerful ad hoc report generator when one was

already available.

The expert system should also allow for deflection of output from

the system to go into a file. This file will save the results of

the system and the case information as well, so that the case can
be recalled at a future time. The recall of a case is to look at

the input as well as the output that was produced by the expert

system.

The input/output file will be utilized for three purposes. First,
it can be utilized in testing, to see if the system reproduces the

same output given the same input. Secondly, the input output case

material can be analyzed by other experts, human experts, who will

validate the use of the knowledge base. The third reason is that

in some cases we will want to revise case input of a previous case.

It makes no sense to completely re-enter the case. Rather we would

call up the previous case, make our modifications or perform our

"what if" modelling, and then continue. We might even want to save

that case as another case in the system.

-121-

E-4.

I lm,. l
0

omun0
04St

cp.

122 -

0mmmmmmmmmmI

9.3 Prototyping Phase.

The prototyping environment provides numerous useful utilities that

will be used by the programmers in order to translate the design

features into a working prototype. Design and prototyping is a

highly interactive process, in fact, the process of knowledge

acquisition, design and prototype occur in a sequence. The

sequence, however, is repeated numerous times throughout the design

and build phase of the project.

Prototyping is merely a way of saying that we're going to build a

portion of the system at a time, and have that portion of the

system be completely operational. It will not have all the

features of a complete expert system, but those features which are

there will work completely.

Because prototyping is continuous and iterative the final design

of the system is never completely frozen, but rather the design is

revised and worked out through the prototyping process. The

implementation of the code in the software therefore, must be

supportive by powerful programming environments. These powerful

programming environments or expert system shells, provide the

assistance to a programmer to allow him to literally take

information from and expert and encode it almost as the expert is

speaking.

The design of the expert system will grow and evolve during the

prototyping phase, no matter how detailed and how careful the

design has been done in the previous phases. New problems, new

modules, new requirements will arise during the prototyping phase.

Programmers will continue to isolate objects and procedures

throughout the prototyping procedure. The prototyping phase will

require good coordination throughout the team, between the

knowledge engineer, the programmer and the domain expert. It will

- 123 -

require a lot of references back to the knowledge acquisition phase

and the knowledge model as well as the system design.

Generally speaking the prototyping phase will be conducted in a

series of prototypes. Usually prototyping phases are approximately

90 days in length, which is to say the sequence of knowledge

acquisition, design and prototyping phase occur over an approximate

90 day period. At the conclusion of that 90 day period, the

running prototype will then be presented back to the domain expert

in order to obtain his comments. The comments from the expert will

then be utilized as a basis for entering into another knowledge

session. From this knowledge acquisition, more design can take

place, and another prototype. Another 90 day sequence of events.

At the end of the second prototype again the prototype is presented

to the domain expert and the sequence is begun again. The

procedure for evaluating the expert system by domain experts will

be discussed in the evaluation methodology, which will be contained

in Volume 2 of this series.

- 124 -

Chapter 10

Implementation Strategy

10.1 Introduction.

The implementation of the expert system into the organizational

environment can be very difficult. Most likely, the expert system
will cause a change in the behavior of the users of the system.

The most obvious of these changes is that now the user will have
to interact with the computer in order to get his job done. Some
individuals accept this interaction with the computer differently
from others. For this reason, it is necessary to have an
implementation plan to effect a smooth implementation. If you have
built the best expert system ever conceived by man, it will provide
no benefits unless it is placed into operation by the target user
group. A good implementation plan is the difference between

complete, enthusiastic acceptance of the system versus resistant,
grudging use or even outright sabotage of the system.

10.2 Managing the Implementation.

Any technological change will be resisted by the organizational
culture. This is a normal human reaction to environmental change
and is to be expected. Most individuals would prefer to keep the

s than change it. The expert system (or any other
computer system) will change behaviors. The most important factor
in gaining acceptance of the expert system is to design a system
that fits the organizational needs. This is the reason the
development team selection placed a great deal of emphasis on
insuring users were part of the development. The using community
will be much more likely to accept a system they had a hand in
designing. This is the basic premise of the stakeholder assumption
discussed in Chapter 5.

- 125 -

The resistance to technological change is rooted in the

organizational culture. A culture is defined as:

organizational Culture - a pattern of basic
assumptions invented, discovered, or developed
by a given group as it learns to cope with
problems of external adaptation and internal
integration that has worked well enough for the
organization to remain viable.

The organizational culture exists in every organization. It is the

way the aggregated group responds to its work place. This

organizational culture has three levels: surface level, subsurface

level, and hidden level.

The surface level of the culture is defined in the artifacts of the

organization. These include any observable behaviors including

slogans and logos of the organization. Slogans and logos have been

rallying symbols for organizations, especially military ones for

centuries. For example, contrast the feelings you have when

contemplating 7th Army's patch of "Seven steps to Hell" with the

logo of a Navy fighter squadron known as the "Tomcatters" showing

a wild looking tom cat carrying a bomb with its fuse burning. Very

different images are usually created in an individuals mind when

he sees these logos. These symbols are part of the surface culture

of the organization.

The subsurface level of the culture is defined in the value

structure of the organization. The values can be identified only

by probing beneath the surface of the organization. The language

and vocabulary of the organization will often give clues to the

subsurface level. For example, when the organization is performing

its tasks manually, it will use the terms appropriate to the manual

process. As the expert system is accepted, the group will adopt

the new vocabulary to describe its actions.

The lowest level of the organizational culture is the hidden level.

It is hidden because even the members of the organization usually

- 126 -

do not realize these parts of the culture exist. The group members
would require some outside assistance in order to identify the
attributes of the hidden culture. Indeed, the knowledge
acquisition process described in Chapter 7 has as its focus the
deep probing to determine what the artifacts of the hidden
behaviors of the domain expert are. These might also give clues
to the hidden culture.

Introduction of the expert system will cause change in much of the
culture. The most immediate change will be the use of the system
by the members of the group. This is a surface change and one that
can be implemented by directive. This does not mean, however, that
the group will fully accept the system. Full acceptance of the
system will be effected only through the subsurface changes that
cause changes in the value system of the group.

Subsurface changes will be required for full acceptance of the
system. These changes can only be effected by approaching the
implementation as a problem in conflict resolution.

10.3 Implementation Plan.

An Implementation Plan must be executed in order to achieve orderly
phase in of the expert system. The plan is written to approach the
implementation as a conflict resolution problem. Actions in the
implementation plan are directed at inducing behavioral change at
two levels of organizational culture change: surface changes and
subsurface changes. Surface changes can be achieved by directive:
requiring use of the system under defined circumstances. These
changes can be implemented immediately. Subsurface changes are
much more difficult to achieve because they require a change in the
group value system. These changes require more time to implement
because adjustments must be made and internalized by the entire
group. Implementation actions are divided below into those
directed at surface changes and subsurface changes.

- 127 -

At all times, it must be remembered that implementation is a

process that must be managed. It is not sufficient to publish a

guide for use of the system and a time-phased implementation. The

way in which the implementation is managed will determine whether

the implementation is one of enthusiastic adoption, persistent

grudging use, or sabotage. The probability of enthusiastic

adoption can be raised by an open communication environment and

lots of feedback, both up as well as down the line.

10.3.1 Surface Implementation Actions. These actions will change
the immediate artifacts of using the expert system in the

department.

* Phase-in the system by assigning a unit to adopt the

system over several months. Start with the unit that is

most positive toward the system and work toward the most

negative. The length of time required for the phase-in

will have to be determined by the strength of user

acceptance of the system and by organizational need.
* Allow the manager of the using unit to control the

implementation. Giving the manager this autonomy will

also help in effecting subsurface value changes that are

required for the ultimate full acceptance of the new

methods implied by the expert system. Each manager

should discuss his plan with his supervisor to obtain

approval of his/her plan.
* Each user must be given full training before using the

system. User support must also continue beyond formal

training. The training must include some of the

rationale for the system and insight into how the system

works.
* Publish a memorandum defining explicit guidelines for use

of the system.
* Publish a checklist of data required to use t1', system.

- 128 -

10.3.2 Subsurface Implementation Actions. These actions are

intended to change the shared group values about the use of the

expert system in the organization.

* Establish a management forum to discuss cases or

situations entered into the system. The user responsible

for the case/situation could present it to the forum.

Discussing the cases will show the value added by the

system as well as initiate subsurface structure changes.

Indicate how results of the system will he used in the

decision making process. If possible, define some

guidelines for when the user can go against the system

based on external contingencies.

Publicize results of the system. Communication is key

to counteracting rumors about the system results and uses

of results.

Listen to users. Their interaction with the system can

provide good points for future versions of the system.

When users see their ideas put into the system, they

identify with it more strongly thus moving their value

system closer to that implied by the expert system.

- 129 -

Chapter 11

Documentation and Maintenance

11.1 Introduction.

The documentation of an expert system is all the materials both

text and graphs produced by the expert system development team that

serve to explain to users how the expert system behaves and to

system developers the detail structure of the expert system.
Because there are two audiences users and developers there are two

broad classes of documentation; user documentation and system

documentation.

This chapter treats documentation in detail, with emphasis on

documentation that is delivered with the finished system. Early

stages of documentation, including the brief description that

documents expert system ideas for screening and the functional

description that documents conceptual design are covered in the

first part of this chapter. The chapter will also provide guidance

for requirements definitions, system specifications and design when

they are required as well as a User Manual for the system.

Documentation as defined above includes several items that are not

always recognized as documentation: the source code, when

carefully annotated with comments is the primary document of system

documentation; annotated lists of error messages, help messages,

menu items, commands, variables, data dictionary, and so forth;

diagrams of screen layouts; documentation of utilities not written

by the developer (compiler, operating system, and so forth); and

internal development documents such as standards for programming

practices and development methodology.

- 130 -

This chapter also discusses documentation for a third potential

audience - potential sponsors or superiors and a brief treatment

of proposals contained in paragraph 11.5.

11.2 Elements and Phases of Expert System Documentation.

Figure 11-1 lists the documents of an expert system, shows their

order of preparation and relationships to each other. The first

document that describes and expert system is a brief description

no more than 2 pages long that documents the initial concept for

the expert system and is used for initial discussions and
comparisons the concept with other competing concepts. This

process allows the decision making team to determine if the expert
system concept warrants further development. The following

paragraphs show how to prepare a brief description.

11.3 Brief Description.

It is generally impossible to tell exactly where the concept for

an expert system begins. Generally the most important aspect of
beginning a concept is a user need that is exhibited in the user

organization. This need is then articulated as a problem to a

potential builder of the expert system. These early discussions
are the initial concept development stage and are documented in the
form of brief descriptions, in an attempt to launch an expert

system development project that would be needs driven as opposed

to technology driven.

For example, the MOBPLEX expert system ideas came from active army

units and mobilization planners that have problems in dealing with
data base access for mobilization data. The intent was to create
an expert system idea from the viewpoint of what decision aiding

opportunities existed, rather that from the standpoint of what

expert system resources were available. The process of

articulating needs and giving an early design concept is a process

of high level synthesis. The output from high level synthesis is

a written, brief description used to describe the project to

- 131 -

Initial Concept

Brief
Description

Functional Proposal
Description

Requirements User
Document Manual

System Program
Specifications Documentation

Maintenance
Documentation

Figure 11-1 Expert System Documents
- 132 -

potential sponsors and to evaluate the project for its benefit to

the organization.

High level synthesis is a stage in the initial concept design where

major decisions about the scope and the basic nature of the expert

system are still being made. At the beginning of high level

synthesis, the most basic questions of scope are considered. Who

will use the proposed expert system? What decisions will be

supported? What data will be provided, and which data will be

automatically accessed and which provided by the user at run time?

What information will be output, to whom, and for what use? Even

after the initial concept is documented in a brief description much

high level synthesis work will remain. As an example, consider the

MOBPLEX expert system. Its brief description is given in Figure

11-2. This brief description, along with brief descriptions of

several other potential expert systems, was subjected to a

screening and selection process as described in the project

initiation chapter. After the MOBPLEX expert system was selected

for development, the conceptual design phase began in earnest and

many basic features of the expert system began to take shape for

the first time. The brief description therefore is a decision

document, not a document which provides a full functional or

requirements definition.

There are several tools that might be utilized in preparing a high

level synthesis so that it can written into a brief description.

Two major tools are lists or taxonomies of attributes of the expert

system and analogy. Both of these tools will be discussed in the

following paragraphs.

Lists or taxonomies are good tools to use during high level

synthesis. These lists list the characteristics or attributes that

the expert system should address and perform, or in some cases,

input and output of the system. For example, Figure 11-3 shows a

- 133 -

MOBPLEX Project Description

The MOBPLEX project is to build a prototype expert system
to suppport Mobilization and Deployment Planning and
Execution for the U.S. Forces command (FORSCOM) at Ft.
McPherson, GA. MOBPLEX will support J5 Mobilization
Planning and Mobilization Stations located throughout the
country. The system will use an object oriented user
interface to allow mobilization planners to access various
databases:

the PTSR submissions by each Reserve and National

Guard unit scheduled under full mobilization,

the most recent Mobilization Station shortfall reports,

the relative priority of the units for mobilization,

the estimate of the number of days required for each
unit to process and train at the mobilization station,
and

the estimate of travel time from home station to
mobilization station following mobilization orders.

The system will encapsulate knowledge in an expert system
about the meta-data of the databases, thus allowing the user
to manipulate multiple databases with no knowledge of the
meta-data.

The system will have the capability of evaluating each unit's
PTSR submission for coherence of data included in the PTSR
in a manner similar to the way an experienced, trained
human evaluator would.

Based on the data submitted in the PTSR, the system will
schedule the various units through POM/POR processing,
various firing ranges, various maneuver areas, and required
transportation resources. The output reports will also
provide insight into facilities loading, training Class III (POL)
requirements, training Class V (ammunition) requirements, and
other training logistical support requirements.

Figure 11-2. MOBPLEX Brief Description

- 134 -

OBJECTIVES:

The primary objective of the MOBPLEX system will be to provide

decision support for mobilization planning at the MOBSTA,

CONUSA and FORSCOM. These will be accomplished using the

following:

Increase timeliness of PTSR data

Make PTSR data more consistent. Create a PTSR checker

that will automatically check the data for internal

consistency using the expertise of a MOB planner.

Provide scheduling support for "what if" modelling and

to reduce the work load of the MOBSTA mobilization

planner when time lines change.

Maintain PTSR database on PC. Provide for electronic

transfer of DARMS data to MOBPLEX using simple

interface running in the available Z248 at the

MOBSTA.

Provide simple user interface: minimize typing, navigate

databases easily, give various perspectives of the

data, and use Lotus-123 for ad hoc report generator.

Provide standard reports. The standard reports to be

printed from the system.

Figure 11-3. Extract of MOBPLEX Attributes List

- 135 -

list that was made for the MOBPLEX expert system, providing

attributes and functions that the system should perform. These

lists were created during the initial conceptual design phase of

MOBPLEX based upon information from current FORSCOM practices. The

information was derived from a survey of MOB planners and the

experience of the J6 in building previous systems. Expert systems

literature was also researched to determine what technological

tools were available for database access support using expert

systems. The list attempted to determine all the uses that might

be required of a mobilization expert system.

Analogies are sometimes a powerful way to synthesize a concept of

what an expert system should be. An analogy forms a mental picture

called a metaphor that allows readers of the brief description to

understand the complete overview of the functionality of the expert

system.

The brief description should be a written document no more than two

pages in length that fully develops the synthesized ideas and

concepts for the expert system. Any precise boundary between the

high level conceptual design and a more detailed design of a

functional description is somewhat arbitrary, but there always

comes a time when the expert system designer has settled on the

basic concepts of what the decision problem is, who has it, what

data are appropriate and available, what models are appropriate and

available, and what computer system and data communication systems

are appropriate and available. All of these things can easily go

into a brief description. After the brief description is completed

and the decision has been made to select a particular expert

system, the design sessions become more detailed and the structure

begins to be more definitive. At this point, the process of

functional design and functional requirements has begun. This will

- 136 -

provide information about what the user will actually do in an

expert system session, and what the system will do in response.

This is the point where high level synthesis and conceptual design

ends and detailed synthesis in the requirements definition begins.

11.4 Functional description of an expert system.

The following general format is recommended for functional

descriptions of proposed systems that constitute complete expert

systems for an ongoing operation in which the same decisions are

already made routinely.

1. Title.

2. Job Description. Functional description of the

responsibilities of the office or person who performs the task

that is proposed to be encapsulated in the expert system. If

the task to be supported is one of a group of related tasks,

that group should be described here.

3. Task Description. Detailed description of the task that the

proposed expert system will assist.

4. Information Environment and Resources. Detailed description

of the data bases, communication systems, and computer systems

in the immediate area of the proposed expert system;

specifications of the equipment on which the system is to run,

if that is fixed in advance of solution definition; list of

the data sources available to the proposed system if data

bases in the immediate area are not the only sources;

architecture of the immediate information environment. If the

proposed system is one of several alternatives this section

may be omitted and the information environment and resources

may be described elsewhere for the whole spectrum of

alternatives.

5. Expected enhancement. Point by point comparison of the

proposed way of handling each sub-task in the task with

current procedures. This is usually written in such a way as

- 137 -

to contain implicitly a list of benefits and to provide a

framework for benefit estimation. If the task is not
currently being routinely performed, this section can list the
benefits of performing the task, compared to current methods.

6. Operators. Who or what group will operate the system in the

sense of using it.
7. Existing procedure. How the function is now performed step

by step. For some systems this section may be redundant for
section 5. But the rationale for this format is that it is
often easier to understand comparative explanations. The

benefits can be discussed in a comparative way which
immediately tells the reader why the proposed system is of
interest and explains what it does by comparison to familiar
ways of doing the same thing.

8. Key concepts. The unique, clever, elegant, original or
creative ideas that make the system viable are explained in
this section. Anything unusual about the proposed expert

system is mentioned.
9. Inputs. There must be a complete list of data items needed

to feed the system, and for each item there must be listed a

normal source, an informal definition, and alternative source
if available, a declaration of committed values, a default
value, and also any special requirements regarding data

quality, integrity, age, user overrides, etc.
10. Outputs. All outputs are listed and described including the

purpose, destination and intended uses of each output item as

well as its information content.

11. Benchmark sessions. At least one typical interactive session
with the proposed expert system should have been envisioned

in enough detail to allow documentation here of at least a
narrative description of a typical use of the system. The

description would give the goals of a typical session, the
data state upon session initiation, a broad narrative of how
the user would interact with the system, and what output would

- 138 -

be produced.

12. User interface. This section narrates how the operator

interacts with the system including the most important

interface protocols for collecting user input and for

generating reports.

13. Equipment and utility software. If section 4 above is omitted

or is written in general terms, the equipment constituting the

work station for the proposed system is listed here.

Requirements for utility software are listed here if they are

not obvious from the environment description.

14. Deliverables. A list of what hardware, software,

documentation and other items that would constitute a delivery

of the proposed system.

15. Estimate of development effort and or development plan. If

the aim of this detailed description is evaluation of the

proposed system against a few alternatives, an estimate of

effort needed to develop the system is given here. If the aim

is to proceed with design, a development plan and schedule

should be reported here.

16. Estimate of the effort required by the domain experts

assisting in designing and building the system.

17. Estimate of testing and evaluation effort and or testing and

evaluation plan. If the aim of this functional description

is evaluation of the proposed system against a few

alternatives an estimate of the effort needed to test and

evaluate the developed system is given here. If the aim is

to proceed with design, an evaluation plan should be reported

here. This might include a plan for user testing, for expert

peer testing, and verification of the system scope. If life

cycle costing methodology is being used for evaluating this

system, a preliminary life cycle cost profile should be

reported here.

- 139 -

11.5 The Proposal.

When writing an expert systems proposal, you must clearly

understand that technology itself is not a reason for implementing

a system. A table of contents of a typical proposal is shown in

Figure 11-4. The expert system is a tool to be used in order

toinsure benefits by increasing productivity, processing paper work

faster, and/or serving customers better. Simply investing in

expert systems in the hope of increasing productivity will not

necessarily get the intended result.

The expert system must be founded upon clear business benefits or

requirements of the organization. Do not allow the technology

issues to jump ahead of the organizational benefits. The expert

systems proposal is intended to make a fundamental change in the

way a company does business, so do not present it as a new

technology. In creating a proposal, the champion must take a

strong leadership role. He needs to decide whether the expert

systems are needed either to increase or to maintain organizational

productivity. This answer can come only from the line operating

units and not from MIS groups.

The brief description and the functional description that have been

prepared form a foundation for the proposal. A proposal should

contain three basic elements: introduction and background, main

body, and cost benefit analysis. The introduction and background

explains why a potential sponsor should be supportive of the

project. In addition, the introduction and background should

include the rationale for the incentive for the proposed system.

It should include the environment in which the system will operate

and a short statement of what the proposed system is and generally

how or why it will alleviate the difficulties identified in the

environmental statement.

- 140 -

Title of Proposal

Summary

Table of Contents

1. Introduction and Background

1.1 Why
1.2 What

1.3 Who
1.4 How

1.5 Where

1.6 When.

2. Proposal
2.1 What you propose to do.
2.2 Deliverables for the project.
2.3 Initial work plan for the project. Estimate of time and effort.

3. Benefits and Costs
3.1 Estimate of Value of implementing system to user organization.

3.2 Estimate of value to sponsor.
3.3 Initial budget estimate for cost of project. Include full life cycle costs.

Figure 11-4 Title Page For Proposal
- 141 -

The main body of the proposal defines precisely what you propose

to do. It defines the scope of the system and its progress towards

development of the complete expert system environment. The

proposal should outline all the deliverables of the system.

Itshould also define the technological scope of the system

specifically stating what kind of prototypes and how many will be

delivered. The expected complete functionality of the final product

should also be forecast. The proposal should also have an

implementation plan included. (Implementation considerations are

contained in Chapter 10 of this guide). The implementation plan

defines milestones and an estimate of the development schedule.

The third important element of the proposal provides the costs and

benefits of the system. (A guide to the preparation of impact

assessments and cost benefit analysis are contained in Volume 2 of

this guide.) In the proposal, the result of the impact assessment

and the cost benefit analysis should be summarized in order to

define the benefits of the final system to the user organization

and an estimate of the cost of developing the system as well as its

ongoing maintenance cost for the life of the project. A specific

budget for the proposed project should be given in this section

giving a work breakdown structure that conforms to the potential

sponsor guidelines.

Appendices to the report can also be included. Particular

appendices might be brief descriptions, the functional description,

and qualifications of the proposed team to accomplish the work.

11.6 Requirements Definition Document.

A Requirements Definition Document contains the results of

functional design and describes the behavior of an expert system

in sufficient detail to begin building the expert system. In the

iterative development methodology, the requirements definition

becomes the primary document to guide the development since

- 142 -

specifications are not prepared in as much detail as in the

traditional development methodology. The iterative development

assumes the user cannot define his total requirements until the

prototyping phase begins. As the user becomes familiar with the

capabilities of expert systems, he will find more requirements for

the system that he initially did not consider. The requirements

definition then should focus on scope of the project rather than

specific details.

If the system is to be implemented by a contractor or agency that

is separate from the designer, a formal Requirements Definition

Document is essential. Also, if significant parts of the hardware

and software resources remain undecided at the time of functional

design, a Requirements Definition Document is useful because it

allows the design to proceed as far as it can while remaining

hardware-independent and software-independent. If a formal

Requirements Definition Document is prepared, it documents

functional design and provides the starting point for program

design.

The Requirements Definition Document gives details of the structure

and behavior of the major modules and of their interfaces with each

other and with the outside world -- the user, communications links,

interactions with databases and other systems, etc. Each major

module is left as a "black box" whose inputs, outputs and behavior

are completely specified in the Requirements Definition Document

but whose internal workings are left to the program designer.

Unlike specifications, requirements can be independent of the

hardware, independent of the utility software and programming

languages, and independent of the specific implementation of

database management. Requirements are not normally independent of

the formats of piped-in data from outside sources; since the

program designer is assumed to have no control of formats of

- 143 -

outside inputs, the requirements should usually require extensive

modularization (isolation) of data inputs. If there are unanswered

questions as to what incoming data will look like, the Requirements

Definition Documents should require a data interpretation module

whose output but not input is well defined; later the solution

definition must define not only the input but also the details of

conversion to the output (that constitutes input to the rest of the

expert system).

A recommended format for Requirements Definition Documents is given

in Figure 11-5. This format assumes that the functional design has

broken the system down into separate modules, each of whose

requirements can be considered separately.

11.7 Solution Definition.

A Requirements Definition Document and definitions of incoming data

are the major elements needed to begin solution definition. The

solution definition provides exact choices of all resources

(hardware, software, utilities) and an overview system

specification. The expert system designer's main job is to produce

a solution definition that satisfies all of the requirements in the

definition and provides the initial guidance for the design and

prototyping phases of the methodology.

Detail program specifications are not usually prepared for expert

systems. But a system specification that provides general guidance

for the development is required. Program design is generally done

simultaneously with the prototyping phase. The system

specification must be revised during the development to reflect the

current state of the design. Thus, the expert system prototype

becomes a "living specification" of the system.

11.8 Program Documentation.

Program documentation is delivered in the form of the Program

Maintenance Manual and the soft copy documentation to which it

- 144 -

Requirements Definition Document

1. Title and Background. Use summary of the

functional description.

2. Architecture of Major System Modules. Provide a

modular breakdown of the system. Names and short

descriptions of the modules that are anticipated in

the system. This should also include data links to

other system when required. This is an overview

section intended to orient the reader into the uses

of the system. Full module descriptions are given

in Section 3.

3. Descriptions of Module Reuirements. Each major

module is described with its requirements.

4. Definitions of Major Variables and Parameters. This

section describes and defines the data elements

required in the system. If some data must come from

other systems, this is the section to describe when

and how the data must be imported. This will

provide a glossary of terms for the solution

definition.

5. Model Descrintions. If any models are already in

use in either a manual process or automated process,

these models should be evaluated for inclusion in

the expert system. Expert systems usually include

algorithmic components.

Figure 11-5. Requirements Definition

- 145 -

refers. This manual is a hard copy document which must describe

the expert system in sufficient detail to provide for installation,

testing, maintenance and enhancement of the system. It delegates

part of this responsibility to soft copy, but its organization and

table of contents should be complete, as if everything except the

detailed source code were printed in the manual itself. Thesoft

copy portion of program documentation consists of the documentation

file and the source code.

11.8.1 Program Maintenance Manual. The Program Maintenance Manual

provides the technical information required by programmers for

enhancing the expert system. You must document the interactive

interface of the expert system in detail. This is best done

through screen documentation and logic flow charting of the whole

system. If your expert system is written in a highly structured

language such as Ada, logic flow charting should be augmented by

structured code or pseudo-code where necessary.

The Program Maintenance Manual, together with the documentation

file and the source code, will be used for maintenance and

enhancement. This means that computer-competent personnel must be

able to use this program documentation effectively to add or modify

any of the expert system's features. This is a severe test of

program documentation. Furthermore, the requirement given

maintenance and enhancement personnel will normally be functional

requirements ("Make the system able to ... "), so those future

personnel will need to understand the intended purposes of user

interactions -- that is, to understand why the system behaves

rather than simply how it behaves. It is not enough to say, "Let

them also read the User Manual." The Program Maintenance Manual

should tie requirements to design. It should not simply be an

abridgment of the User Manual, but should treat the requirements

from the system provider's viewpoint rather than from the user's

- 146 -

viewpoint. This means that each requirement description should
refer to the design features that implement it.

Data and communication resources are in another category of
maintenance documentation. Generally the Program Maintenance
Manual for an expert system that performs data extraction should
include:

* A brief description of each database from which the

expert system will extract data, including the correct
official name of the database, who is currently
responsible for maintaining its data contents, who is
responsible for its formats and definitions, and a
reference to its official documentation.

* A brief description of each file, report or grouping of

data that the expert system will extract from the
database.

* A brief description of how extraction is handled (even

if extraction is automatic), including current access
codes and formats and current network access codes or
how these are determined in the field.

* A set of references to system documentation to identify

where changes need to be made if there are changes in the
access codes, formats, protocols or structures of any of
the extracted databases or of any of the communication
channels to them.

Even trivial changes in extracted databases or in communication
channels will cause malfunctions in data base extraction. The
documentation must explicitly define all data base connections to
facilitate maintenance of the data base extraction.

11.5.2 Ioulae Code -- Internal Documentation. The expert system
shells have evolved so that their programs are largely self-

- 147 -

documenting. This is especially true of rule based systems.

Objects are not always as transparent as rules and may require more

extensive internal documentation than rules.

Naming of variables, commands, subroutines, functions, files and

utilities is an important part of internal documentation. With

good descriptive names, the shell code becomes easy to read and

understand. Remember that the shell only provides a syntax; you

provide the vocabulary. Besides naming, there are other elements

of style that enhance internal documentation. These include

indentation, punctuation, and rules for transfer of control.

11.8.3 Documentation File. The Documentation file can be a
separate file or it may precede the main program file. It is

written in comments of the expert system shell language or an ASCII

file. Nearly everything in the documentation file should be

printed in the hard copy system manual as well, but it is important

that such things as module directories and glossaries of variables

be in a file so that the maintenance and enhancement personnel can

use text editing or query utilities to find names and locate lines

of code where a given name appears.

The Documentation file should contain as a minimum the following:
Definition of all global variables or those common to

more than one function.

Definitions of the purpose and operation of each module

of the system.

A glossary of all variable names, modules, chunks,

utility names and file names.
* Technical on module operation and function
* The date and time of the latest revision of the

documentation file.

On-line user documentation, to be discussed along with other user
documentation in the next section, is of interest to maintenance

- 148 -

and enhancement personnel as well as to users. Menus, command

lists, error messages and HELP messages should be available either

in source code or in the documentation file, so that maintenance

and enhancement personnel can make automated searches through them.

11.9 User Documentation.

User documentation in the form os the User Manual is one of the

most important interfaces the user will have with the system. A

successful expert system may have hundreds of users and be used

thousands of times. Because development effort is amortized over

so many sessions, it makes practical sense to invest in great

sophistication to achieve simplicity and efficiency for the user.

The user is not expected to be a computer programmer, and is not

expected to read system documentation. There is a separate

category of documentation for the user.

User documentation consists of three sources of information to

inform the user: intrinsic documentation consisting of on-screen

instructions, menus, screen layouts and general transparency of the

interactive interface; a hard copy User Manual; and on-line

documentation, including HELP if provided.

11.9.1 Intrinsic Documentation. There are some categories of user

documentation that do not require coverage in the User Manual or

in on-line documentation. These categories of intrinsic
documentation include everything that the user can reasonably be

expected to know already, or to find out from a source other than

formal user documentation. You should review these categories

before deciding what to include in the User Manual and on-line

documentation. While reviewing intrinsic documentation, tie down

its sources. The User Manual has ultimate responsibility to give

the user all required information; it can delegate the presentation

of some categories to other media, but delegation must be specific,

so the reader of the User Manual can tell exactly where he or she

- 149 -

must go to find out each thing not explicitly given in the manual.

Hardware and software resources are in another category of

intrinsic user documentation. For example, the MOBPLEX User Manual

is written assuming that User Manuals for the computer, the

operating system and the mouse are readily at hand. A User Manual

should not quote or paraphrase at length from existing manuals for

imbedded software utilities such as a DBMS or graphics driver. On

the other hand, a balance must be struck; in general, the User

Manual should specifically include anything that can be put on a

single page, and anything that involves choices of alternatives by

the user.

Any data base extractions for the expert system must be documented

in the user documentation. If the designer has provided user-

specified access codes or interactive extraction procedures, these

would be explicitly put in the User Manual. The following items

should be in the User Manual:

* A brief description of each file, report or grouping of

data that the expert system will extract from the

database.
A brief description of how extraction is handled (even

if extraction is automatic), including current access

codes and formats and current network access codes or

how these are determined in the field.

The interactive interface itself is a fertile source of intrinsic

documentation. Ideally, the user should be able to operate the

expert system without needing to refer to either the User Manual

or to the on-line documentation. The screen layouts, on-screen

instructions, and menus can make it obvious to the user how to

proceed. The protocols, if consistent enough and if well enough

based on good enough metaphors, can allow the user to infer from

- 150 -

having done one thing -- how to do another thing.

The on-screen instructions and menus are documentation in a real

sense. Their syntax gives the interactive interface a personality;

their vocabulary gives the designer powerful control over some

aspects of the user's mental processes while interacting with the

expert system. The syntax should be as simple and consistent as

possible. Unlike a person, whose personality should be

interesting, an interactive interface should have a transparent

personality, which is one that is, above all, predictable. A good

interface should be dull, flat and boring if the user focuses on

the interface itself, because the idea is for the user to focus

through the interface on the problem being solved. The user should

not be thinking of moving a mouse and pressing one of its buttons,

but of selecting or deselecting an object; and the user should not

think of that object as a menu item or a picture, but as the real

world object it represents.

The vocabulary of on-screen instructions and menus does two things:

it keeps the user focused on the problem rather than the interface,

and it connects parts of the interface together. Always use words

that describe real-world entities and actions, rather than computer

entities and actions. As an example, if an expert system is

collecting input from a user, you would never see the word

"collect" in instructions or menus; even the word "enter" is not

as good as a situation in which the entering is an obvious

requirement and the focus is on the objects themselves.

One rule regarding vocabulary of on-screen instructions and menus

is to avoid synonyms. There is usually one best name for an

object, and that one name should be used everywhere. Consistency

of vocabulary throughout the system is very important to the ease

of use of the system. The most conon exception to this rule is

to use class membership synonym. For example, an "Engineer

- 151 -

Detachment" is one kind of "mobilizing unit," so a static menu item

or instruction might mention "mobilizing unit" and be valid whether

the mobilizing unit is an Engineer Detachment or something else.

However, in many such cases it might be better to make the menu

item or instruction a dynamic one, so that Engineer Detachment (or

whatever the object is) would be dynamically inserted into the

menus based on the system state.

Another rule for on-screen instructions and menus is to avoid

forced reading. Suppose you are ready to enter something, and you

know its proper format and content. At that moment, your only

interest in the display is to see whether the system is ready to

accept this particular input. What you want to see is the name of

the kind of data you are ready to enter. If this name is

displayed, but accompanied with an explanation telling you all the

legal ways to enter it, then you must at least glance at this

material. If there is too much of it, it will interfere with your

ability to spot the looked for name, and it will interrupt you
while you inspect it. Explanatory information should be placed in
pop-up windows available on demand from the user.

The interactive interface must provide intrinsic documentation for

both novice and expert users. One way of serving both is to

relegate lengthy instructions to on-line documentation such as HELP

messages. Another is to put instructions in a special place away

from the area that solicits an input. The novice user can enter
HELP or glance at the explanation area, while the expert user can

go ahead unhindered. For example, MOBPLEX maintains information

about system state in a box in the lower right hand corner of the

screen. The main menus are always across the top of the screen

with associated pop-up windows for choices. Data input is into

pop-up windows containing forms in the main window of the screen.

Most input is quickly accomplished with a mouse rather than

kwyboarding.

- 152 -

Pop-up menus have the advantage of avoiding screen clutter and
displaying information only when it is needed. They are certainly
better than using separate screens for each subfunction, because
the remainder of the display not covered by a pop-up serves to keep
the user oriented. Keeping the user oriented to his location in
the system is important to the ease of use of the system.

Whether subfunctions are handled by pop-up menus, by pop-up windows
that handle a subfunction in a more complex manner than simply by
menu choice, or by separate screens it is important to realize that
the architecture of the organization of subfunctions is a form of
intrinsic documentation.

The wrong way to organize subfunctions is just let them evolve.
Suppose the designer fails to heed advice given in Chapter 9 and
simply proceeds as follows: while designing a function, this
designer encounters a subfunction that is complex enough to deserve
its own pop-up menu or pop-up subfunction window (or, even worse,
a separate screen). Then, inevitably, the same designer will find
a subfunction within that subfunction that deserves the same
treatment. Unfortunately, many interactive interfaces are designed
along these lines.

A subfunction architecture that simply evolves can become a
documentation nightmare. There is never any real excuse for a
screen architecture to have more than three or four levels. If the
user can be in a screen within a screen, the user can get lost and
must be given some landmarks. You may have to devise after-the-
fact names for sub-sub-.. functions (if a screen is reached by menu
selection, use the menu item as the screen name) and label each

screen with the name of its parent screen (or with its entire

ancestry).

- 153 -

Well-constructed subfunction architecture gives an expert system

a user-understandable structure and thus constitutes intrinsic
documentation. Other intrinsic documentation coming from good
interface design includes screen layout consistency and protocol

consistency. When the same information is in the same part of
every screen, its location on the screen helps the user understand
it. Thus, in MOBPLEX the lower right corner of the screen always

carries information about the user's location in the hierarchy of
the data base levels. In menu-driven systems, designers should

always put the menu items in a consistent order, such as with the
most typical function at the top and "exit to previous screen" at
the bottom. Protocols would allow the user to predict the rules
for entering one datum from the files for others.

11.9.2 User Manual. No matter how easy the system is to use, a
User Manual is a required component of any expert system. The User
Manual does not replicate other documentation but provides a
guidebook on how to use the expert system and a reference to
details and use of each function provided by expert system. The
general flow of the manual should include the following.

1. Introduce the expert system to the reader to give enough

information to determine if the expert system is applicable to
his/her problem.

2. The next section aids the user in Getting Started with initial
hardware and software configuration and system initialization.

3. Learning the system provides for an overview of the expert
system environment and concludes with a step-by-step example to
walk a first time user through the expert system functions.

4. System References contain a detailed description of each
function and its use within the expert system.

- 154 -

The operator consults user documentation:

* to learn generally about the expert system

* to ascertain the applicability of the expert system to

a problem or class of problems

to find out how or whether the expert system treats

certain aspects of a problem
* to learn how to accomplish a particular high-level

function
* to refer to details of an interactive procedure

The INTRODUCTION section should provide the reader with a concise

overall description of the expert system. This allows the user to

determine if the expert system has application to their problem.

Putting this first in the introduction saves the user from having

to search the manual to make this determination.

GETTING STARTED begins by the user determining if he/she have the

necessary hardware and software before attempting to set up or

install the expert system. This section may also have a "fast

track" option for the experienced user. The hardware configuration

section should include:. type or class of computer, necessary and

suggested peripherals, minimum memory, and minimum floppy and/or

hard disk storage required. Software configuration section should

include: intended operating system or systems, and any additional

support software.

The installation section must contain a clear step-by-step process

the user can follow explicitly. If available, set off the commands

the user is to perform in boldface. Having the directions in

normal typeface and the commands in bold type allows the user to

know at a glance what they are to type or to perform.

The SYSTEM OVERVIEW should provide the user with a brief overview

of how the expert system serves the purpose stated in the

- 155 -

INTRODUCTION. This overview is followed by a detailed description

of each component of the expert system. The overview section

should give the user an overall conceptual view of the expert

system.

With a rough understanding of how the expert system works, the user

is then prepared for a step-by-step example of solving the problems

the expert system has been designed for. This example should be

as simple as possible while including essential features necessary

to solve actual problems. The example should walk the user through

the process step-by-step, explaining to the user what he is doing

at each step. For good implementation strategy, it is essential

the user understand why he must do a particular step.

The User Manual must document each feature completely, regardless

of whether or not he/she is able to envision everything the user

can do with it. Users always find shortcuts, and they find

roundabout ways of accomplishing functions that the designer did

not anticipate. For many complex and flexible expert systems, it

is simply impossible for the designer to predict all the different

ways that users could combine features to accomplish aims.

The SYSTEM REFERENCE section provides a detailed description of

each feature in the expert system. These references should be

grouped together into -omponents by screen or by the logical

organization of the expert system.

In the User Manual for MOBPLEX the explanations are centered around

each screen and the screens themselves are structured in a logical

flow. Within each screen in the MOBPLEX expert system every user

action that can be executed from that screen is fully described

including the interactions. This includes underlying assumptions

both before and after each user action. Furthermore, any

underlying algorithms and features should be explained. Logical

- 156

flow in MOBPLEX is centered around operations and the actions

within operations. The MOBPLEX User Manual starts with a detailed

explanation of the operation screen followed by a detailed

explanation of each action screen.

The carefully organized User Manual can thus serve both reference

and tutorial purposes. Its overall organization is by very-high-

level functions that are not only understandable to the novice user

but also classify the features of the expert system into separate

groups.

A good index is essential. No matter how well the manual is

organized the user can always ask a question whose answer is found

in a combination of places. A useful optional feature of an index

is the key reference for each entry, which is set off from other

references by boldface or other means. The key reference is the

one that defines the entry rather than simply mentioning it.

A glossary is usually needed. It should contain definitions of all

expert system-specific words and phrases. It may also contain

definitions of ordinary words, but if the manual has too many "big"

words in it, you should usually substitute a simpler word rather

than generate a glossary entry. However, if a "big" word is used

many times in the manual and no simpler word carries the exact

meaning, put it in the glossary.

A good User Manual should include helpful hints and warnings to

assist in avoiding problems in the operation of the system for

hardware software and the required data bases. They should be set

apart from other text and easily identifiable.

11.9.3 On-Line Documentation. Some expert systems provide

specific on-line documentation as part of the shell. There is

usually no reason the user should not consult the hard copy User

- 157 -

Manual while operating, so on-line documentation should not be

provided without first checking to see if there is any real need

for it.

For most expert systems the best form of on-line documentation is

dynamic HELP. The main idea of dynamic HELP is that a user can

enter "HELP" (or select a HELP menu item) in the middle of a

procedure, and the expert system can consult its state to see what

help the user needs rather than ask the user to specify something

that the user doesn't know. Using ordinary static HELP systems is

like trying to use a dictionary to look up a word that you have no

idea how to spell. The user can, for example, activate a function

or object that may or may not be the intended one, then enter HELP

and receive a message specific to the active function or object.

The main disadvantage of dynamic HELP is its difficulty of

implementation. You need to add an entire state-classification

structure to the logic. Each message that is provided must be

activated if and only if its particular state exists. It probably

takes at least 200 messages to comprise a good dynamic HELP system

for a typical expert system. Such a system still falls short of

being a complete substitute for the hard copy User Manual, because

although it can document each interactive protocol, it cannot

explain modelling concepts and high-level functions adequately.

- 158 -

INDEX

Index

algorithmic 104, 146

backwardchaining 25, 64, 66, 68, 74, 77, 78

categorize your problemiii, 65
" . . compilation . 64compatio......................................6

constraint satisfaction 74, 76

control windows 117
cost benefit5, 33, 49, 141, 143
delivery platformiii, 33, 64, 69, 71
design problems iii, 35, 67, 68
development interface iii, 64, 69

development platform iii, 64, 71, 72
diagnostic problems iii, 66, 68

display layouts iv, 109, 114

documentation . iv, v, vi, 2, 4, 36, 81, 82, 86, 131, 132, 139,

140, 145, 147-156, 158, 159
documentation review iv, 86

domain expert . 34, 35, 48, 52, 55-57, 59, 60, 63, 86-89, 91-98,

123, 124, 127
end user interface 68

estimate 48-52, 140, 143
evaluation 3-5, 27, 34, 36, 52, 53, 56, 94, 124, 140

expert system design iv, 107

expert system shell . iii, 4, 16, 21, 55, 64, 66, 71, 76, 78, 149

fact base 23, 24

forward chaining 25, 66, 74, 77, 78

functional description . . v, 131, 137, 138, 140, 141, 143, 146

hypothetical reasoning 68, 74, 77, 81

if/then 24, 25, 86

impact assemment . 5, 143

inference engine 21, 24, 25, 26

1

Index

interface requirements iii, 64, 65, 68

interpret 21, 76, 80, 92

interpreter 21

interview 58, 87-93, 105

interviewing iv, 58, 86, 87, 89-91

knowledge acquisition . iv, 31, 33-35, 50-53, 59, 60, 85-87, 90,

91, 94, 96-98, 123, 124, 127

knowledge base . . ii, 5, 17, 18, 24-27, 36, 70, 78, 85, 86, 121

knowledge base validation 5

knowledge engineer . . . 34-36, 49, 55-61, 63, 86-93, 95-97, 123

knowledge engineering 4, 49, 58, 61, 85, 86, 93

knowledge modelling iv, 98, 100, 105, 107

knowledge representation 64, 92, 98, 99, 102

message windows 117

method of reasoning..... 64

modelling iv, 98, 100, 105-107, 121, 136, 159

monitoring iii, 66, 67

narratives iv, 94, 95

object oriented programming 76-78, 81

on-linevi, 68, 149-151, 153, 158, 159

one page description 31

perceived objects........ iv, 107-109

pilot project 31, 33, 48, 49

planning problems iii, 68

platform requirements iii, 65, 71

pop-up 115-117, 119, 153, 154

problem type ii, 64, 65

process control 67

program documentation v, 145, 147

proposal v, 11, 141-143

protocols iv, 86, 94, 96, 97, 140, 148, 151, 155

2

Index

prototyping phase v, 34, 38, 52, 53, 114, 117, 123, 124, 144, 145

quality 36-38, 44, 57, 89, 139

quality assurance 36-38

requirements definttiOR, 31, 33, 35, 38, 50-52, 134, 138, 143-146

rule base 21, 24

rule based programming 74, 77, 78

scheduling problems iii, 67, 68

shell capabilities iii, 72, 74

shell selectioniii, 64, 65

simulation iv, 69, 86, 96, 97

specification 33, 35, 117, 145

stakeholder 56, 59, 125

system interfaces iii, 70

system specification 145

truth maintenance 68, 74, 76, 77

user iii, iv, vi, 1, 4, 15, 18, 19, 23, 24, 29, 34, 36, 53, 55,

57-59, 64, 66-70, 74, 76, 77, 80, 85, 96, 105,

107-109, 113, 115-117, 120, 125, 129, 130, 131, 132,

134, 136, 137, 139, 140, 143, 144, 147, 149-159

user interface . iii, 4, 15, 34, 64, 68, 69, 85, 107, 108, 117,

136, 140

User Manualvi, 109, 131, 147, 150, 151, 155, 157-159

validation 3, 5, 36, 38, 53, 105

vendor support *.iv, 64, 81

verification 3, 89, 105, 140

windows 108, 109, 114-117, 153, 154

- Z248 136

3

